[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
About Journal::
Editorial Board::
Articles Archive::
Indexing Databases::
To Authors::
To Reviewers::
Registration::
Submit Your Article::
Policies and Publication Ethics::
Archiving Policy::
Site Facilities::
Contact Us::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Citations732593
h-index1110
i10-index1513
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 10, Issue 4 (12-2023) ::
2023, 10(4): 9-17 Back to browse issues page
Effects of Detraining Followed by Aerobic Exercise on Cardiac Stem Cells in Aged Male Rats
Arezoo Eskandari
Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran , a.eskandari_1988@yahoo.com
Abstract:   (500 Views)
Introduction: The regenerative potential of cardiac stem and progenitor cells is affected by aging and detraining, with the C-Kit cardiac stem cell expressing the Nkx2.5 transcription factor playing a crucial role. Exercise is known to enhance organ regeneration during aging, but the mechanisms involved in new cardiomyocyte formation during physiological cardiac remodeling remain unclear.
Material & Methods: Eighteen aged Wistar rats (~440g) were divided into three groups: Control (CO), aerobic training (AT) (5 days per week, 50-75% of maximum speed) for six weeks, and detraining (DT) for four weeks. RT-PCR analysis determined Nkx2.5 gene expression, while immunohistochemical staining identified C-kit-positive and Ki67-positive cardiac progenitor cells.
Results: In heart tissue, C-Kit and Ki67 values significantly differed between the control–training (P=0.001) and training-detraining (P=0.001) groups but not between the control and detraining groups for C-Kit (P=0.502) and Ki67 (P=0.475). Nkx2.5 exhibited a significant difference between control-training (P=0.001), training-detraining (P=0.001), and control-detraining (P=0.006).
Conclusion: Exercise increased the proliferation of heart stem cells, activating C-Kit differentiation and elevating Nkx2.5 expression, thereby delaying the effects of aging. However, detraining significantly impacted heart stem cell function, emphasizing the importance of sustained exercise for optimal cardiac health.
Keywords: Physical activity, Aging process, Physical Deconditioning, Myocardial Regeneration, Stem Cells
Full-Text [PDF 2527 kb]   (94 Downloads)    
Type of Study: Research | Subject: Physical medicine
Received: 2022/09/18 | Accepted: 2022/11/25 | Published: 2023/12/19
References
1. Partridge L, Thornton J, Bates G. The new science of ageing. The Royal Society; 2011. p. 6-8. doi: 10.1098/rstb.2010.0298
2. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans Science. 2009;324(5923):98-102. doi: 10.1126/science.1164680.
3. Vina J, Borras C, Miquel J. Theories of ageing. IUBMB life. 2007;59(4‐5):249-54. doi: 10.1080/15216540601178067
4. Hosoda T, Rota M, Kajstura J, Leri A, Anversa P. Role of stem cells in cardiovascular biology. Journal of Thrombosis and Haemostasis. 2011;9:151-61. doi: 10.1111/j.1538-7836.2011.04363.x.
5. Ferreira-Martins J, Ogórek B, Cappetta D, Matsuda A, Signore S, D'Amario D, et al. Cardiomyogenesis in the developing heart is regulated by c-kit–positive cardiac stem cells. Am Heart Assoc; 2012. doi: 10.1161/RES.0000000000000252.
6. Hosoda T. C-kit-positive cardiac stem cells and myocardial regeneration. American journal of cardiovascular disease. 2012;2(1):58.
7. Le T, Chong J. Cardiac progenitor cells for heart repair. Cell death discovery. 2016;2(1):1-4.
8. Armiñán A, Gandía C, García-Verdugo JM, Lledó E, Mullor JL, Montero JA, et al. Cardiac transcription factors driven lineage-specification of adult stem cells. Journal of cardiovascular translational research. 2010;3(1):61-5. doi: 10.1007/s12265-009-9144-3.
9. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes & development. 1995;9(13):1654-66. doi: 10.1101/gad.9.13.1654.
10. Behrens AN, Iacovino M, Lohr JL, Ren Y, Zierold C, Harvey RP, et al. Nkx2-5 mediates differential cardiac differentiation through interaction with Hoxa10. Stem cells and development. 2013;22(15):2211-20. doi: 10.1089/scd.2012.0611.
11. Bondue A, Tännler S, Chiapparo G, Chabab S, Ramialison M, Paulissen C, et al. Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation. Journal of Cell Biology. 2011;192(5):751-65. doi: 10.1083/jcb.201007063.
12. Caprioli A, Koyano-Nakagawa N, Iacovino M, Shi X, Ferdous A, Harvey RP, et al. Nkx2-5 represses Gata1 gene expression and modulates the cellular fate of cardiac progenitors during embryogenesis. Circulation. 2011;123(15):1633-41. doi: 10.1161/CIRCULATIONAHA.110.008185.
13. Sun X, Kaufman PD. Ki-67: more than a proliferation marker. Chromosoma. 2018;127(2):175-86. doi: 10.1007/s00412-018-0659-8.
14. Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, et al. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. European heart journal. 2014;35(39):2722-31. doi: 10.1093/eurheartj/ehs338.
15. ESKANDARI SHAHRABI A, Sori R, Chobineh S, Mazaheri Tirani Z. The effect of high intensity interval and continues training on cardiac stem cells function and myocardial regeneration capacity in male rats. Journal of Sport and Exercise Physiology. 2019;12(2):55-66.
16. Ahmadi F, Siahkouhian M, Mirdar S, Tapak L. The Effect of a Detraining After Resistance Training on the Histochemical Expression of Potassium Channels and Mitochondrial Biogenesis of Heart Tissue in Male Rats. The Horizon of Medical Sciences. 2021;27(2):230-45. doi: 10.32598/hms.27.2.3361.1.
17. Leitão L, Pereira A, Mazini M, Venturini G, Campos Y, Vieira J, et al. Effects of three months of detraining on the health profile of older women after a multicomponent exercise program. International journal of environmental research and public health. 2019;16(20):3881. doi: 10.3390/ijerph16203881.
18. Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, et al. Resistance training for older adults: position statement from the national strength and conditioning association. The Journal of Strength & Conditioning Research. 2019;33(8). doi: 10.1519/JSC.0000000000003230.
19. Toraman NF, Ayceman N. Effects of six weeks of detraining on retention of functional fitness of old people after nine weeks of multicomponent training. British journal of sports medicine. 2005;39(8):565-8. doi: 10.1136/bjsm.2004.015586.
20. Xiao J, Xu T, Li J, Lv D, Chen P, Zhou Q, et al. Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells. International journal of clinical and experimental pathology. 2014;7(2):663.
21. Leite CF, Lopes CS, Alves AC, Fuzaro CSC, Silva MV, de Oliveira LF, et al. Endogenous resident c-Kit cardiac stem cells increase in mice with an exercise-induced, physiologically hypertrophied heart. Stem cell research. 2015;15(1):151-64. doi: 10.1016/j.scr.2015.05.011.
22. Marino F, Scalise M, Cianflone E, Mancuso T, Aquila I, Agosti V, et al. Role of c-kit in myocardial regeneration and aging. Frontiers in endocrinology. 2019;10:371. doi: 10.3389/fendo.2019.00371.
23. Izadpanah P, Golchin A, Firuzyar T, Najafi M, Jangjou A, Hashemi S. The effect of shear stress on cardiac differentiation of mesenchymal stem cells. Molecular Biology Reports. 2022;49(4):3167-75. doi: 10.1007/s11033-022-07149-y.
24. Hu Q, Zhang T, Li Y, Feng J, Nie R, Wang X, et al. β2AR-dependent signaling contributes to in-vivo reendothelialization capacity of endothelial progenitor cells by shear stress. Journal of Hypertension. 2020;38(1):82-94. doi: 10.1097/HJH.0000000000002203.
25. Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Frontiers in cardiovascular medicine. 2018;5:135. doi: 10.3389/fcvm.2018.00135.
26. Boström P, Mann N, Wu J, Quintero PA, Plovie ER, Panáková D, et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell. 2010;143(7):1072-83. doi: 10.1016/j.cell.2010.11.036.
27. Ellison GM, Torella D, Dellegrottaglie S, Perez-Martinez C, Perez de Prado A, Vicinanza C, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. Journal of the American College of Cardiology. 2011;58(9):977-86. doi: 10.1016/j.jacc.2011.05.013.
28. Brown D, Gatter K. Ki67 protein: the immaculate deception? Histopathology. 2002;40(1):2-11. doi: 10.1046/j.1365-2559.2002.01343.x.
29. Schüttler D, Clauss S, Weckbach LT, Brunner S. Molecular mechanisms of cardiac remodeling and regeneration in physical exercise. Cells. 2019;8(10):1128. doi: 10.3390/cells8101128.
30. Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circulation research. 2004;94(4):514-24. doi: 10.1161/01.RES.0000117306.10142.50.
31. Catalucci D, Latronico MV, Ellingsen O, Condorelli G. Physiological myocardial hypertrophy: how and why? Frontiers in Bioscience-Landmark. 2008;13(1):312-24. doi: 10.2741/2681.
32. Waters R, Alam P, Pacelli S, Chakravarti AR, Ahmed RP, Paul A. Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta biomaterialia. 2018;69:95-106. doi: 10.1016/j.actbio.2017.12.025.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eskandari A. Effects of Detraining Followed by Aerobic Exercise on Cardiac Stem Cells in Aged Male Rats. Journal of Basic Research in Medical Sciences 2023; 10 (4) :9-17
URL: http://jbrms.medilam.ac.ir/article-1-718-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 4 (12-2023) Back to browse issues page
مجله ی تحقیقات پایه در علوم پزشکی Journal of Basic Research in Medical Sciences
Persian site map - English site map - Created in 0.15 seconds with 40 queries by YEKTAWEB 4646