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Introduction: In this research, a new material (Ti2V0.7Cu97.3) 

was proposed for the target of medical linear accelerators (linacs) 

to reduce the production of unwanted photoneutrons in the 

radiotherapy. So, the fluence, dose equivalent and kerma of the 

photoneutrons were calculated in a soft tissue phantom. 

Materials and Methods: The medical linac was the Varian 2100 

C/D 18 MV, which its tungsten target was replaced with a new 

multi-metal target (Ti2V0.7Cu97.3). Desired quantities were 

computed in a ICRU soft tissue phantom, using the Monte Carlo 

code MCNPX (v. 2.6). 

Results: The ratio of the maximums of fluence, kerma, and dose 

equivalent of photoneutrons along the central axis of the ICRU 

phantom with new target rather than tungsten target were 72 %, 

59 % and 61 %, respectively. Average of the Ratio of fluence, 

kerma, and dose equivalent in inner area (distances less than 5 

cm from central axis) at different depths of the phantom with new 

target rather than tungsten target were 78 %, 70 % and 75 %, 

respectively. Uncertainties at all points were less than 5 % 

(except for a few points which were less than 10 %). 

Conclusion: This work showed that applying Ti2V0.7Cu97.3 alloy 

for the target of linac, can reduce the produced photoneutrons up 

to 38 % by an applicable and inexpensive way. 
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Introduction 

Medical linear accelerators (linacs) are 

used for treating compact tumors 

extensively. Head of linacs mainly 

constructed of heavy elements such as lead, 

tungsten, iron, cupper and so on.   When the 

applied energy is more than the threshold 

energy of (γ, n) or (e, n) reactions, (~ 8 
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MeV), some undesired photoneutrons and 

electroneutrons are produced which can 

deliver additional dose to patients, which 

possibly can cause secondary cancers after 

radiotherapy. Since quality factor of 

neutrons is about 2 - 20 times more than 

photons (i.e., varies with neutron energy) 

(1), they have a substantially higher 

biological effectiveness than photons. 

Therefore, even a small number of neutrons 

can lead to a non-negligible effective dose 

to patients, in the form of non-target and 

out-of-field dose (2). 

Interactions between high energy treatment 

beam and nuclei of composing elements of 

the linac, beam collimation system, couch, 

patient's body, air and walls of treatment 

room can produce photoneutrons. Because 

the threshold energy of (γ, n) reaction for 

composing elements of the head of linac, 

such as lead, tungsten, copper and iron, is 

generally in the range of 6.74 - 11.20 MeV, 

interactions between high energy treatment 

beam and nuclei of composing elements of 

the medical linear accelerator (linac), 

couch, patient's body, air and walls of 

treatment room can produce photoneutrons 

(3). 

Estimation of photoneutron contamination 

in radiotherapy (RT) has been studied by 

several researchers in various experimental 

and simulation methods (4-10). Bezak and 

his coworkers (11, 12) measured the total 

dose equivalent in Rando and water 

equivalent phantoms, using TLD and 

estimated the risk of secondary cancer in 

organs of Rando phantom in treatment of 

prostate. Sohrabi and Hakimi measured the 

dose of thermal and epithermal 

photoneutrons using a self-made 

experimental method within a polyethylene 

phantom (13). Bagheri et al. (14) and 

Bagheri et al. (15) measured the dose of 

thermal photoneutrons in treatment of 

breast cancer within the breast Rando 

phantom using TLD. Comparing the 

experimental results for photoneutron 

contamination show differences between 

results. It has been demonstrated that using 

the Monte Carlo code MCNPX, in 

radiotherapy, can lead to reliable outputs 

and are accordance with experimental 

measurements.  Barquero et al., (16) 

calculated the effects of total photoneutrons 

on various organs using MCNPX code in a 

computational phantom. Many others 

calculated the spectra of photoneutrons and 

dose equivalent(DE) due to photoneutrons 

in tissue (17-21). and some of them (18, 22) 

calculated the DE of fast neutrons in voxel-

based phantoms. Calculating the effects of 

each category of photoneutrons along the 

beam axis, in water equivalent and water 

phantoms were conducted by many other 

researchers (4, 5, 23-28). 

According to published researches, 

different materials and thickness of target 

have influence on dose rate and production 

of photoneutrons (29-32). Geo et al. (29) 

studied the effects of thickness of several 

materials on dose rate and leakage of 

electron for 6MeV electron beam. 

Berger and Seltzer (30) described 

calculations of bremsstrahlung production 

and associated photoneutron production in 

thick targets irradiated by electron beams 

with energies between 10 and 60 MeV. 

They showed that the target plays an 

important role in the production of photon 

and yield of photoneutron. 

It is shown that the main components which 

produce contaminant photoneutrons are 

primary collimator, secondary collimator 

and target (33, 34). Manipulation of target 

for reducing the photoneutron yield of a 

linac is more applicable and easer rather 

than collimators. Commonly the target of 

linacs is made of tungsten. In a study, 

Rojas-Arias et al. (31) proposed a new self-

made alloy (Ti2V0.7Cu97.3) as the target of 

linac. They showed when a plate of this 

alloy was irradiated with a 16 MeV beam of 

electrons, smaller number of photoneutrons 

produce in comparison with tungsten plate.  

In this research we intend to calculate the 

proportion of photoneutron fluence, kerma 

and dose equivalent of photoneutrons in 

axial and transverse directions within an 

ICRU phantom using MCNPX simulation 

code for the proposed target [by Rojas-
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Arias et al. (31)] in 18 MV Varian linac 

2100 C/D machine (hereafter new machine) 

and compare them with conventional 

machine with tungsten target (hereafter 

current machine). To consider the role of 

nitrogen and similarity to the tissue of the 

body, we used ICRU soft tissue equivalent 

phantom in simulations. Most of the 

researchers have studied photoneutrons 

distributions in the air of the treatment 

room and only few works studied 

photoneutrons within soft tissue equivalent 

phantom.   

Materials and Methods 

A typical treatment room (28) with walls, 

ceiling (thickness of 1.7 m) and floor 

(thickness of 1 m) from concrete simulated. 

For calculating the required quantities, the 

MCNPX Monte Carlo code, Version 2.6, 

was applied. Current and new machines are 

the same except the material of the target.  

The head of the linac including all effective 

components therein containing target 

(tungsten for current machine and 

Ti2V0.07Cu97.93 for new machine), primary 

collimator (W), vacuum window (Be), 

flattening filter (Fe and Ta), ionization 

chamber (Cu and Kapton), secondary 

collimator (W and Pb), mirror (Mylar), 

Jaws (W), and upper circle (Fe) were 

simulated. The energy of linacs was 18 

MeV in photon mode. The fluence, dose 

equivalent and kerma of photoneutrons 

calculated at 105 points, at axial and 

transvers directions of incident photon 

beam, within an ICRU soft tissue phantom. 

Field size of the treatment photon beam was 

10 × 10 cm2 and SSD= 100 cm. More 

details are in previous work (10).   

F4 tally is for calculating transmitted flux 

of the particle in terms of number of 

particles per square centimeter (n.cm-2), 

which could be converted to DE using 

Flux-to-Dose Rate Conversion factor and 

Quality Factor in terms of mSv/Gy-X 

(Appendix H of MCNPX user’s manual). 

The values of these factors are related to 

energy of photons, and have specific 

amount for every range of energy. Energy 

ranges and conversion factors were entered 

to input file using “dose energy” and “dose 

function” cards, respectively. In this 

research, for this purpose, NCRP NO. 38 

recommended factors were used. Kerma 

acquired by means of F6 tally in terms of 

MeV.g-1/electron, which was changed to 

mGy.Gy-1. 

Results 

At first, neutron source strength was 

calculated for new machine based on 

McGinley and Landry method (9). The 

result was 0.85 × 1012 n/Gy in comparison 

with 1.37 × 1012 n/Gy for current machine. 

These outputs obviously showed that 

production of photoneutrons has decreased 

for new machine.   

The fluence, kerma, and dose equivalent of 

photoneutrons along the central axis at 34 

points of ICRU phantom from the depth of 

0.1 cm to 29 cm for current and new 

machine are depicted in Figure 1.  

The fluence, kerma, and dose equivalent of 

total photoneutrons along the transvers 

direction at 80 points at depths of 0.1, 1, 10 

and 20 cm of the ICRU phantom were 

shown in Figures 2-4.  

Discussion 

Since the elements in new alloy have lower 

atomic number than tungsten, it is expected 

that production of photoneutrons be less 

than tungsten, too. Calculations 

demonstrated this fact; the neutron source 

strength for new machine is 68 % of 

common machine. 

Figure 1a shows that the amounts of 

fluence, kerma and dose equivalent at all 

points are less for new machine. These 

quantities decrease rapidly to depth of 15 

cm (i.e., for fluence after depth of 2 cm) and 

then the curves become nearly constant, 

which is in accordance with Kry’s findings 

(19), for tungsten target.
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Figure 1. The (a) fluence, (b) kerma, and (c) dose equivalent of photoneutrons along the central axis of ICRU 

phantom for current and new machine. 
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Figure 2. Fluence of photoneutrons at lateral direction in depths (a) 0.1 cm, (b) 1 cm, (c) 10 cm and (d) 20 cm.  
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Figure 3. Kerma of photoneutrons at lateral direction in depths (a) 0.1 cm, (b) 1 cm, (c) 10 cm and (d) 20 cm. 
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Figure 4. Dose equivalent of photoneutrons at lateral direction in depths (a) 0.1 cm, (b) 1 cm, (c) 10 cm and (d) 

20 cm. 
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For comparing the results quantitively, the 

phantom was divided into two areas: depths 

less than 15 cm (shallow area) and depths 

more than 15 cm (deep area).  

Ratios of maximums of fluence, kerma, and 

dose equivalent at axial direction in 

machine with new target to machine with 

tungsten target are 0.72, 0.59, and 0.61, 

respectively. Ratio of these quantities in 

average at shallow and deep areas are 0.72, 

0.60, 0.56; and 0.65, 0.50, 0.64, 

respectively. All over, these findings show 

all three quantities at axial directions are 

less in machine with new target.  

Figure 2 shows the fluence of 

photoneutrons at lateral direction at 0.1, 1, 

10 and 20 cm depths. These diagrams show 

that at distances less than 5 cm and 

distances more than 10 cm the curves are 

almost horizontal and at distances between 

5 and 10 cm they are descending. Because 

the field size was 10 × 10 cm2, so the edge 

of incident photon beam is at 5 cm from 

central axis and the number of 

photoneutrons is more in the photon field. 

So, we can divide the phantom laterally into 

three areas: inner area (distances less than 

5 cm from central axis), penumbra area 

(distances between 5 and 10cm) and outer 

area (distances more than 10 cm). This 

manner is on expectance, because it was 

shown that fluence of photoneutrons is 

higher within the photon field (35,18).  

Figures 3 and 4 shows the kerma and dose 

equivalent of photoneutrons at lateral 

direction in depths 0.1, 1, 10 and 20 cm, 

respectively. Kry and et al., (19) using 

MCNPX code have derived a curve for 

dose equivalent only for surface of the 

phantom, in the same conditions for 

tungsten target, and our result (dose 

equivalent at depth 0.1 cm) is very close to 

these amounts which in another paper (10) 

depicted and compared these two diagrams.  

Ratios of fluence in average at lateral 

directions (i.e., at 0.1, 1, 10 and 20 cm 

depths) in machine with new target to 

machine with tungsten target at inner area 

(i.e., axial distances less than 5 cm) and 

outer area (i.e., axial distances more than 5 

cm) are 0.78, and 0.74, respectively. Ratios 

of kerma and dose equivalent in average for 

new target and tungsten target at inner area 

and outer area are 0.70, 0.65; and 0.75, 

0.66, respectively. Overall, these findings 

show that the fluence, kerma and dose 

equivalent in lateral directions are less in 

machine with new target. 

Conclusion 

Along central axis of the treatment beam, in 

the ICRU soft tissue phantom, the fluence, 

kerma, and dose equivalent of produced 

unwanted photoneutrons for the linac 

which its target is made of new alloy 

(Ti2V0.7Cu97.3) are less than the linac with 

tungsten target. 

Calculation of photoneutron production in 

both central axis and transverse directions 

within the ICRU phantom showed that 

photoneutron fluence, kerma and dose 

equivalent decreased remarkably by 

applying the new target in the linac and 

verify that this introduced alloy is suitable 

for setting in the head of linacs. Though this 

alloy mainly composed of cupper, but heat 

removal of cupper (401 W/m.℃) is larger in 

comparison with tungsten (174 W/m.℃) 

(31). 

 In future works one can calculate the 

photon yield as well as electron 

contamination of this new target, to gain 

more knowledge of this new machine. 

Authors suggest another research by 

applying some neutron absorbers as 

protective aprons during treatment and 

calculating or measuring the photoneutron 

contamination in presence of these 

protective materials.  
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