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Abstract

Introduction: In recent years the relationship between electromagnetic fields and coronary
artery disease is attracted a considerable attention. Low density lipoprotein (LDL) oxidation is
the initial step in the development of atherosclerosis. Paraoxonasel (PON1) protects LDL and
High density lipoprotein (HDL) against oxidative processes, thus preventing the formation of
atherogenic (oxidized-LDL) ox-LDL molecules. In this study we investigated the effects of
static magnetic fields (SMFs) and extremely low frequency electromagnetic fields (ELF-
EMFs) on PONL activity as one of the independent risk factors for cardiovascular disease.
Materials and methods: Pooled serum sample of 20 healthy men were exposed to SMFs and
EMPFs flux densities of 0.125, 0.25, 0.5, 1, 2, 3 and 4 mT for 60, 120 and 180 minutes at 25°C
and then PONL1 activity was measured spectrophotometrically using paraoxon as substrate.
Results: EMFs of 0.125-1 mT had no effect on PONL1 activity. Exposure to magnetic flux
density of 2 mT leads to a significant increase in PONL1 activity in 1 hour (P <0.05). Magnetic
flux density of 3 and 4 mT, after 1hour of exposure, lead to an increase of PON1 activity to
1.2% and 2.8%, respectively (P <0.01).

Conclusion: PON1 activity is influenced by a variety of agents like environmental,
pharmacological, and lifestyle factors as well as age and sex. According to the finding of this
study ELF-EMFs can alternate the serum activity of PONL1 in vitro. If this effect of EMFs on
PONL1 activity has proven in vivo, it can be considered as an effective factor in coronary artery
disease.
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Introduction

In today’s world, with the progression of
technology and continuous exposure of
human to a diverse range of
electromagnetic fields (EMFs),
investigation on the biological effects and
health implications of EMFs matters a lot.
Meanwhile evaluation of the effects of
EMFs on cardiovascular disease (CVD) has
attracted  considerable attention  (1).
Coronary artery disease (CAD) is the most
common type of CVD, the greatest current

public health problem, in the 21st century
(2). CAD is a state of degenerative and
dynamic alteration in the arterial walls of
heart which results from the accumulation
of lipids, especially cholesterol and
formation of atherosclerosis plaques (3).
Among the lipoproteins, high density
lipoprotein (HDL) and low density
lipoprotein (LDL) play a significant role in
atherosclerosis ~ process  (4). LDL
modification, especially formation of
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oxidized LDL (ox-LDL), is an early step in
promotion of atherosclerosis which leads to
the macrophages accumulation in the
arterial wall and transformation in to the
foam cells (5). On the other hand, HDL has
antioxidant activities (6) and inhibit the
oxidation of LDL (7). This antioxidant
property of HDL, in part, resulted from the
capacity of paraoxonase-1 (PON1), an
enzyme associated with HDL structures, to
hydrolyze the oxidized phospholipids and
hydroxides of cholesteryl linoleate
contained in ox-LDL molecules (8). PON1
also limits the process of foam cell
formation and reduces the formation of
atherosclerotic plaques through
suppressing  the  differentiation  of
monocytes into macrophages (9).
Decreased PONL1 activity has been seen in
several diseases such as CAD (10). It is
evident that PON1 activity is influenced by
a variety of agents like pharmacological,
environmental, and lifestyle factors (11-
13). It is evident that EMFs can influence
the activity of enzymes involved various
metabolic pathways in plants (14-16),
cultured cells (17), and animals (18).
Investigation on rats shown that exposure to
extremely low frequency magnetic fields
(ELF-MF)  could  impair  oxidant-
antioxidant function and might increase
oxidative stress and lipid peroxidation in a
time dependent manner (18). The aim of
this study is to investigate the effects of
static magnetic fields (SMFs) and ELF-
MFs on human serum PONL1 activity in
vitro in a common intensities we expose to
daily.

Materials and methods

Serum preparation and enzyme activity
assay: A pooled serum was prepared from
12 h fasting blood samples of 20 donors.
Blood samples (2 ml) were collected by
venepuncturing after 12-14 h fasting.
Serum was separated by centrifugation at
3000 rpm for 15 min. A 100 pl aliquot of
serum was stored at -80°C until the
measurement of serum PON1 activity.
PONL1 activity was determined using 2 mM
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paraoxon (diethyl p-nitro-phenyl
phosphate, Sigma chemical Co., USA) as
the substrate in 100 mM tris buffer, pH 8.0,
containing 2 mM of CaCl2. A 40 ul aliquot
of pooled serum was added to 500 pl of the
substrate medium. The generation of p-
nitrophenol (initial rate of hydrolysis) was
determined at 412 nm using UV-VIS-3100
spectrophotometer  (Shimadzu, Kyoto,
Japan) over a period of 2 min (19). The
molar extinction coefficient of p-
nitrophenol was considered 17,000 M/cm
(20). AIll assays were performed in
duplicate at 25°C. The between assay and
within assay coefficient of variation (CV)
for the method was 3.6% and 5.1%,
respectively.

SMF and EMF Exposure System: A
solenoid cylinder with a diameter of 12 cm,
height of 30 cm, and 1200 turns was used to
generate SMF and EMF. For producing
suitable static magnetic flux densities, a
regulated direct current (DC) power supply
(Model 7321, Sanjesh, Tehran, Iran) and for
producing suitable electromagnetic flux
densities, a voltage regulator AC power
supply (model: TDGC2, 220v, 50-60 Hz,
Delta International Electric Co, Shanghai,
China) have been applied. The solenoid was
located inside a 25 °C ventilated incubator
(Parsazma, Tehran, Iran), so the
temperature inside the solenoid was
controlled exactly during the exposure.
Before enzyme activity measurement,
serum samples (inside a quartz cuvette)
were put in the centre of the solenoid for
certain times. The produced SMF and EMF
at the exact site of cuvette location was
measured using a digital teslameter with a
3-D sensor (Holaday, Eden Prairie, MN)
(21, 22).

Statistics analysis

Statistical analysis was performed using
SPSS 16.0 (SPSS Inc., Chicago, IL). The
results are presented as mean values *
standard deviation. A probability of 0.05
was considered statistically significant.
Non-parametrical Mann-Whitney—
Wilcoxon test was used to compare the data
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between control and exposed samples.
Comparison of data between different
magnetic flux densities and different
exposure times was examined with the non-
Results

parametric  Kruskal-Wallis H-test for
several independent samples.

The impact of SMFs of 0.125, 0.5, 1, 2, 3 mT SMF for 3 hours decreased the PON1
and 4 mT on serum PONL1 activity is shown activity to 1.7% (P <0.05). As indicated in
in Tablel. Static magnetic flux density of Table 1, PON1 activity significantly
0.125 mT had no effect on PON1 activity. increased only at the first hour of exposure
Static magnetic flux densities of 0.25 and to 2mT SMF (P <0.05). SMFs of 3 and 4
0.5 mT lead to an increase (8.1% and 1.7%, mT lead to the increase in PONL1 activity in
respectively) in PONL1 activity at the first all applied times of exposure.

hour of exposure. Exposure of serum to 1

Tablel. Effect of SMFs on serum PONL1 activity after 3 hours of exposure.
Time of exposure (min)

SMF (mT) 0 60 120 180
0.125 77.93%0. 68 778205 78.56  0.23 78.26 + 0.4

0.25 77.40 + 0.4 83.66 % 0.87** 82.01 + 0.35%* 83.83 £ 0.51%*
05 77.85+ 0.4 79.21 + 0.58* 80.32  0.61** 79.82 % 0.61**
1 78.00 + 0.41 78.42 + 0.42 77.94 +0.18 76.77 + 0.68*
2 78.27 +0.42 79.26 + 0.33* 78.07 + 0.45 77.48 +0.28

3 78.15 + 0.38 82.55 + 0.33** 82.49 + 0.30** 80.25 % 0.24**
4 78.45 + 1.34 87.41 + 0.35%* 83.35 + 0.38** 82.51 % 0.40**

Serum PONI1 activity was determined using paraoxon as substrate at 25 °C within two minutes. The data shows
the level of PON1 activity in U/l and the values expressed as mean + standard derived from the five separate tests.
P <0.05, "P <0.01

The impact of extremely low frequency
EMFs of 0.125, 0.5, 1, 2, 3 and 4 mT on
serum PONL1 activity is indicated in Table
2. Electromagnetic flux densities of 0.125
to 1 mT had no effect on PON1 activity
even after 3 hours of exposure. Magnetic

flux density of 2 mT increases the activity
of PONL just at the first hour of exposure
(P <0.05). The magnetic fields of 3 and 4
mT result in a significant increase in
enzyme activity, reaching a maximum of
1.2% and 8.2%.

Table2. Effect of EMFs on serum PONL1 activity after 3 hours of exposure.
Time of exposure (min)

EMF (mT) 0 60 120 180
0.125 84.63 +0. 63 85.0 £ 0.36 84.96 + 0.35 84.83+0.4
0.25 84.96 + 0.57 84.64 + 0.61 84.98 +0.51 84.56 + 0.44
0.5 85.26 + 0.53 85.12 +0.29 84.76 + 0.45 84.69+ 0.35
1 85.15 + 0.49 85.76 + 0.51 85.73 + 0.40 85.80+ 0.34
2 84.75 + 0.40 85.93 + 0.45* 85.81 + 0.50 85.89 + 0.29
3 85.31 + 0.49 87.09 + 0.39** 87.01 + 0.48** 86.88 + 0.43**
4 85.11 + 0.49 87.16 + 0.5%* 87.48 + 0.45%* 87.51+ 0.31%*

Serum PONI1 activity was determined using paraoxon as substrate at 25 “C within two minutes. The data shows
the level of PON1 activity in U/l and the values expressed as mean * standard derived from the five separate tests.
P <0.05, P <0.01

Discussion

This study was undertaken to investigate
the effects of SMFs and extremely low
frequency EMFs on human serum PON1

activity in vitro. According to the result of
our study, SMFs and ELF-EMFs can
impact the activity of PON1, although
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changing the activity of PON1 under the
SMF doesn’t follow a specific pattern and
is not dependent on the time of exposure.
Exposure to magnetic flux density of 2 mT
leads to a significant increase in PON1
activity in 2 hours. Magnetic flux density of
3 and 4 mT lead to an increase in PON1
activity to 1.2% and 2.8% after 1 h of
exposure respectively.

The earth’s magnetic field is about 0.03 to
0.07 mT, which is a natural component of
the environment for living organisms.
Magnetic fields much weaker than the
earth’s field can affect living organisms
through the chemical processes and effect
on the radical pair recombination (23). A
review by Belyavskaya suggested that
prolonged exposure of plants to a weak
magnetic field might cause different
biological effects at the cellular, tissue and
organ levels (24).

Induction of electrical charges and currents
is a primary action of MF in biological
systems (25). Influence on nuclear spins of
paramagnetic molecules is one of the major
molecular effects of MFs which plays an
important role in chemical reaction when
two molecules with unpaired electrons are
formed following the disruption of
chemical bound (26).

Study on the impact of electromagnetic
fields on the enzymes activity is a new
concept in science and there are only a few
publications on this subject in accessible
literature. Enzymes contain  protein
structures that organize the dipoles and
charges into an especial pattern that can
orient specifically the electric field they
exert onto particular regions of their bound
substrates (27-30). This effect is called
electrostatic preorganization. A
reorganized enzyme active site can create
an electric field with a particular orientation
which is controlled by the protein’s folded
structure and optimizes a particular
electrostatic interaction (28).

The impact of a frequent magnetic field on
the activity of peroxidase, catalase and
superoxide dismutase (respiratory
enzymes) was investigated before (31, 32).
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According to the report of Seifirad et al,
acute ELF-MF exposure increased lipid
peroxidation and antioxidant serum activity
(PONL1 activity) in rat. These changes are
irreversible in chronic exposure. They
believe that the effects of ELF-MF evoke
antioxidant system to recompense toxic
effects of produced reactive oxygen species
(18).

Shaoyi et al, investigate the effects of
magnetic field on the activity of a-amylase
purified from Bacillus subtilis. They report
that magnetic field had a considerable
effect on activity, Km, Vm and secondary
conformation of a-amylase in a dose and
time dependent manner. The values of Km
and Vm reduced with increase in the
intensity of magnetic field (33).

Conclusion

ELF- MF exposure could impair oxidant
antioxidant balance and might increase
oxidative stress and lipid peroxidation.
Antioxidant defect could be repaired after
exposure; however it might depends on the
duration and continuity of ELF-MF
exposure. This investigation indicates that
PONL1 activity can affected by static and
electromagnetic fields in vitro, whereas
increases of magnetic field intensity and
exposure time do not cause linear increases
for PONL1 activity. The possible reason for
change in PON1 activity and Kkinetic
parameters may be the secondary
conformation changed in enzyme structure
following the exposure to static and
electromagnetic fields.
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