:: Volume 11, Issue 1 (1-2024) ::
2024, 11(1): 34-44 Back to browse issues page
TRX Training Impact on Femur Neck Bone Density and Serum Leptin in Osteopenic Women: A Four-Month Study
Fatemeh Poodineh , Abbas Salehikia , Maryam Banparvari , Zahra Raghi
Department of Sport Sciences, Faculty of Education and Psychology, University of Sistan and Baluchestan, Zahedan, Iran , salehikia@ped.usb.ac.ir
Abstract:   (954 Views)
Introduction: Osteoporosis, characterized by diminished bone mass and increased fracture susceptibility, prompts the investigation into the impact of a four-month TRX training regimen on femur neck bone mineral density (BMD) and its correlation with serum leptin levels in women with osteopenia.
Material & Methods: In this quasi-experimental study, 30 women with osteopenia were purposefully selected and randomly assigned to TRX training (n = 15) or control (n = 15) groups. The intervention group underwent TRX exercises thrice weekly for 45-60 minutes per session for four months. Blood samples collected at baseline and post-intervention measured serum leptin levels via ELISA kit (Bio vendor, Czech Republic), while Dexa Lexxos Digital (2D model, USA) determined femur neck BMD. SPSS 20 software, dependent/independent samples t-tests, and Pearson correlation were used for data analysis.
Results: TRX training significantly increased femur neck BMD, reducing serum adiponectin levels versus the control group (P = 0.001 and P = 0.01, respectively). Compared to baseline, TRX training raised femur neck BMD and lowered serum leptin levels (P = 0.000 and P = 0.01, respectively). A significant inverse correlation emerged between femoral neck BMD and serum leptin levels in women with osteopenia (P = 0.00).
Conclusion: Findings suggest that TRX resistance training holds promise for enhancing the rehabilitation of women with osteopenia
Keywords: Osteopenia, TRX Exercise, Femur Neck Bone Mineral Density, Leptin
Full-Text [PDF 1541 kb]   (305 Downloads)    
Type of Study: Research | Subject: Physical medicine
Received: 2021/11/3 | Accepted: 2022/01/22 | Published: 2024/01/20
References
1. Saiem Aldahr MH. Bone mineral status response to aerobic versus resistance exercise training in postmenopausal women. World Appl Sci J. 2012;16(6):806-13. http://www.idosi.org/wasj/wasj16(6)12/5.pdf.
2. Khorsandi J, Shamsi M, Jahani F. The survey of practice about prevention of osteoporosis based on health belief model in pregnant women in arak city. J Rafsanjan Univ Med Scie. 2013; 8(1):35-46. http://journal.rums.ac.ir/article-1-1661-fa.html.
3. Hernlund EA, Svedbom M, Ivergård J, Compston C, Cooper J, Stenmark EV, et al. Osteoporosis in the european :union:: Medical management, epidemiology and economic burden. 2013; 8: 136. dio:10.1007/s11657-013-0136-1.
4. Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY. Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol. 2013; 213234. [DOI:10.1155/2013/213234.]
5. Bemben DA , Bemben MG. Dose-response effect of 40 weeks of resistance training on bone mineral density in older adults. Osteoporos Int. 2011 ;22(1):179-86. [DOI:10.1007/s00198-010-1182-9.]
6. Khan AA, Farhad A, Siddiqui PQR, Ansari B. Effects of osteoanabolic exercises on bone mineral density of osteoporotic females: A randomized controlled trial. Int J Health Sci. 2019;13 (1):9-13. PMID: 30842712; PMCID: PMC6392486.
7. Ahmadi Kakavandi M, Alikhani S, Azizbeigi K. The Effect of body pump training on bone mineral density and balance in postmenopausal women. Iran J Health Educ Health Promot. 2019; 7 (3):316-327. http://journal.ihepsa.ir/article-1-1160-en.html.
8. Kemmler W, Lauber D, Weineck J, Hensen J, Kalender W, Engelke K. Benefits of 2 years of intense exercise on bone density, physical fitness, and blood lipids in early postmenopausal osteopenic women. Arch Intern Med. 2004; 164(10):1084-1091. doi:10.1001/archinte.164.10.1084.
9. Laura AG, Armas R. Pathophysiology of osteoporosis. Endocrinol Metab Clin.2014; 41(3):475–486. doi: 10.1016/j.ecl.2012.04.006.
10. Bemben DA , Bemben MG. Dose-response effect of 40 weeks of resistance training on bone mineral density in older adults. Osteoporos Int. 2011 ;22(1):179-86. [DOI:10.1007/s00198-010-1182-9.]
11. Winters-Stone KM, Snow CM. Site-specific response of bone to exercise in premenopausal women. Bone. 2006; 39(6):1203-1209. [DOI:10.1016/j.bone.2006.06.005.]
12. Tavakkoli Darestani A, Hosseinpanah F, Tahbaz F, Amiri Z, Tavakkoli Darestani R, Hedayati M. Effects of conjugated linoleic acid supplementation on body composition and leptin concentration in post-menopausal women. Iran J Endocrinol Metab. 2010; 12(1): 48-59. http://ijem.sbmu.ac.ir/article-1-787-en.html.
13. Reid IR. Relationships among body mass, its components, and bone. Bone J. 2012; 31: 547-555. [DOI:10.1016/S8756-3282(02)00864-5.]
14. Roux S. New treatment targets in osteoporosis. Joint Bone Spine. 2010;77:222-8. [DOI:10.1016/j.jbspin.2010.02.004.]
15. Moonikh K, Kashef M, Azad A, Ghasemnian A. Effects of 6 weeks resistance training on Body Composition, serum Leptin and muscle strength in non-athletic men. Horizon Med Sci. 2015; 21(2): 135-40.dio: ‎ 10.18869/acadpub.hms.21.2.135.
16. Lau PWC, Kong Z, Choi CR, Yu CCW, Chan DFY, Sung RYT, et al. Effects of short-term resistance training onserum leptin levels obese adolescents .J Exerc Sci Fit. 2010; 8(1): 54-60. [DOI:10.1016/S1728-869X(10)60008-1.]
17. Peeri M, Zamani M. Comparing the effect of 8-weeks resistance training with different patterns of movement on the levels of adiponectin, leptin, testosterone and cortisol in sedentary men. Iran J Endocrinol Metab. 2016; 17(6):448-56.
18. Golara K. Suspension training total body resistance exercise. Federation of sport for all Tehran. 2016; 15-9.
19. Dawes J. Complete guide to TRX suspension training. Champaign, Illinois: Human Kinetics; 2017.
20. Fonseca H, Moreira-Gonçalves D, Coriolano HJ, Duarte JA. Bone quality: the determinants of bone strength and fragilit. Sports Med. 2014; 44(1):37-53. DOI: [DOI:10.1007/s40279-013-0100-7.]
21. Allison SJ, Folland JP, Rennie WJ, Summers GD, Brooke-Wavell K. High impact exercise increased femoral neck bone mineral density in older men: a randomised unilateral intervention. Bone J. 2013; 53(2):321-328. [DOI:10.1016/j.bone.2012.12.045.]
22. Hagihara Y, Nakajima A, Fukuda S, Goto S, Iida H, Yamazaki M. Running exercise for short duration increases bone mineral density of loaded long bones in young growing rats. Tohoku J Exp Med. 2009; 219(2):139-43. [DOI:10.1620/tjem.219.139.]
23. Mitsui Y, Gotoh M, Fukushima N, Shirachi I, Otabe S, Yuan X, et al. Hyper adiponectinemia enhances bone formation in mice. BMC Musculoskelet Disord. 2011; 12(18): 1-6. dio: [DOI:10.1186/1471-2474-12-18.]
24. Liu Y, Song CY, Wu Sh, Liang QH, Yuan LQ, Liao EY. Novel adipokines and bone metabolism review article. Int J of Endocrino. 2013; 8(4):1-9. [DOI:10.1155/2013/895045.]
25. Reid IR. Relationships between fat and bone. Osteoporos Int. 2008; 19(3):595– 606. Doi: : [DOI:10.1007/s00198-007-0492-z.]
26. Chanprasertyothin S, Piaseu N, Chailurkit L, Rajatanavin R. Association of circulating leptin with bone mineral density in males and females. J Med Assoc Thai. 2005;88(5):655-9. http://www.medassocthai.org/journal.
27. Oh KW, Lee WY, Rhee EJ, Baek KH, Yoon KH, Kang MI, et al. The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clinical Endocrinology.2005; 63(2):131-8. doi/abs/10.1111/j.1365-2265.2005.02312.x.
28. Kontogianni MD, Dafni UG, Routsias JG, Skopouli FN. Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res 2004; (19):546-51. doi/abs/10.1359/JBMR.040107.
29. Tsofliou F, Pitsiladis YP, Malkova D, Wallace AM, Lean ME. Moderate physical activity permits acute coupling between serum leptin and appetite-satiety measures in obese women. Int J Obes Relat Metab Disord. 2003;27(11):1332-9. [DOI:10.1038/sj.ijo.0802406.]
30. Elefteriou F, Karsenty G. Bone mass regulation by leptin: a hypothalamic control of bone formation. Pathol Biol .2004;52(3):148-53. [DOI:10.1016/j.patbio.2003.05.006.]
31. sCaro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet .1996; 348:159–61. https://d1wqtxts1xzle7.cloudfront.net.


XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 1 (1-2024) Back to browse issues page