[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
About Journal::
Editorial Board::
Articles Archive::
Indexing Databases::
To Authors::
To Reviewers::
Registration::
Submit Your Article::
Policies and Publication Ethics::
Archiving Policy::
Site Facilities::
Contact Us::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Citations794658
h-index1211
i10-index1714
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 11, Issue 4 (9-2024) ::
2024, 11(4): 68-75 Back to browse issues page
Correlation Between Toxin-Antitoxin Systems and Persistence States in Staphylococcus aureus Isolates
Faed Osama Fahdil , Laith Alhusseini
Department of Ecology, College of Science, Kufa University, Kufa, Najaf, Iraq , laithphd100@gmail.com
Abstract:   (173 Views)
Introduction: Levels of the human epidermal growth factor receptor 2 (HER2) gene are low in normal breast tissue, but half of the patients with breast cancer exhibit higher levels of this receptor. The differential expression of the HER2 gene in normal and malignant cells makes it an excellent biomarker for therapeutic purposes. In this study, we evaluated the degree of HER2 overexpression in patients and its relationship with age and the occurrence of metastases.
Materials & Methods: In this retrospective, registry-based, two-center cohort study, information on 1500 breast cancer patients recruited from Shahid Mostafa Khomeini Hospital in Ilam Province was collected from 2020 to 2023.
Results:  The likelihood of metastasis in cancer patients with HER2 gene expression was three times higher (adjusted OR: 2.82; 95% CI: 1.79–3.29; P=0.001). Additionally, the involvement of lymph nodes (adjusted OR: 2.01; 95% CI: 0.87–3.79; P=0.03) was significantly associated with increased metastasis.
Conclusion:  This study demonstrates that HER2 gene expression and the number of involved lymph nodes are significant prognostic factors that increase the risk of metastasis. Therefore, implementing comprehensive breast cancer screenings can play an important role in the treatment and prevention of metastasis in breast cancer patients.
Keywords: Toxin-antitoxin systems, Persister Cells, Recalcitrance, Tolerant, Physiology
Full-Text [PDF 1180 kb]   (62 Downloads)    
Type of Study: Review Article | Subject: Microbiology
Received: 2024/03/14 | Accepted: 2024/05/13 | Published: 2024/09/18
References
1. Lee AS, De Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Prim. 2018;4(1):1–23.
2. Urish KL, Cassat JE. Staphylococcus aureus Osteomyelitis: Bone, Bugs, and Surgery. Infect Immun. 2020 Jun;88(7).
3. Yang D, Wijenayaka AR, Solomon LB, Pederson SM, Findlay DM, Kidd SP, et al. Novel Insights into Staphylococcus aureus Deep Bone Infections: the Involvement of Osteocytes. MBio. 2018 Apr;9(2).
4. Wu D, Forghani F, Daliri EB-M, Li J, Liao X, Liu D, et al. Microbial response to some nonthermal physical technologies. Trends Food Sci Technol. 2020;95:107–17.
5. Zhao X, Zhong J, Wei C, Lin C-W, Ding T. Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol. 2017;8:237514.
6. Zhao F, Bi X, Hao Y, Liao X. Induction of viable but nonculturable Escherichia coli O157: H7 by high pressure CO2 and its characteristics. PLoS One. 2013;8(4):e62388.
7. Renbarger TL, Baker JM, Sattley WM. Slow and steady wins the race: an examination of bacterial persistence. AIMS Microbiol. 2017;3(2):171–85.
8. Singh G, Yadav M, Ghosh C, Rathore JS. Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. Curr Res Microb Sci. 2021 Dec;2:100047.
9. Alhusseini LB, Maleki A, Kouhsari E, Ghafourian S, Mahmoudi M, Al Marjani MF. Evaluation of type II toxin-antitoxin systems, antibiotic resistance, and biofilm production in clinical MDR Pseudomonas aeruginosa isolates in Iraq. Gene Reports. 2019;17.
10. Ramage HR, Connolly LE, Cox JS. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet. 2009 Dec;5(12):e1000767.
11. Hayes CS, Sauer RT. Toxin-antitoxin pairs in bacteria: killers or stress regulators? Cell. 2003 Jan;112(1):2–4.
12. Wang X, Lord DM, Cheng H-Y, Osbourne DO, Hong SH, Sanchez-Torres V, et al. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol. 2012 Oct;8(10):855–61.
13. Unterholzner SJ, Poppenberger B, Rozhon W. Toxin–antitoxin systems: biology, identification, and application. Mob Genet Elements. 2013;3(5):e26219.
14. Wen J, Fozo EM. sRNA antitoxins: more than one way to repress a toxin. Toxins (Basel). 2014;6(8):2310–35.
15. Afif H, Allali N, Couturier M, Van Melderen L. The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Mol Microbiol. 2001 Jul;41(1):73–82.
16. Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GPC. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci. 2009;106(3):894–9.
17. Masuda H, Tan Q, Awano N, Wu K-P, Inouye M. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol Microbiol. 2012 Jun;84(5):979–89.
18. Brown JM, Shaw KJ. A novel family of Escherichia coli toxin-antitoxin gene pairs. J Bacteriol. 2003 Nov;185(22):6600–8.
19. Schuster CF, Bertram R. Toxin-Antitoxin Systems of Staphylococcus aureus. Toxins (Basel). 2016 May;8(5).
20. Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, Targets, and Triggers: An Overview of Toxin-Antitoxin Biology. Mol Cell. 2018 Jun;70(5):768–84.
21. Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017 Aug;15(8):453–64.
22. Melter O, Radojevič B. Small colony variants of Staphylococcus aureus. Folia Microbiol (Praha). 2010;55:548–58.
23. Hobby GL, Meyer K, Chaffee E. Observations on the Mechanism of Action of Penicillin. Proc Soc Exp Biol Med. 1942;50(2):281–5.
24. Tuchscherr L, Löffler B, Proctor RA. Persistence of Staphylococcus aureus: Multiple Metabolic Pathways Impact the Expression of Virulence Factors in Small-Colony Variants (SCVs). Front Microbiol. 2020;11:1028.
25. Chang J, Lee R-E, Lee W. A pursuit of Staphylococcus aureus continues: a role of persister cells. Arch Pharm Res. 2020 Jun;43(6):630–8.
26. Peyrusson F, Varet H, Nguyen TK, Legendre R, Sismeiro O, Coppée J-Y, et al. Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat Commun. 2020 May;11(1):2200.
27. Kussell E, Kishony R, Balaban NQ, Leibler S. Bacterial persistence: a model of survival in changing environments. Genetics. 2005 Apr;169(4):1807–14.
28. Hurlow JJ, Humphreys GJ, Bowling FL, McBain AJ. Diabetic foot infection: A critical complication. Int Wound J. 2018 Oct;15(5):814–21.
29. Liu S, Huang Y, Jensen S, Laman P, Kramer G, Zaat SAJ, et al. Molecular physiological characterization of the dynamics of persister formation in Staphylococcus aureus. Antimicrob Agents Chemother. 2024 Jan;68(1):e0085023.
30. Wei W, Chen Z-N, Wang K. CRISPR/Cas9: A Powerful Strategy to Improve CAR-T Cell Persistence. Int J Mol Sci. 2023 Aug;24(15).
31. Shang Y, Wang X, Chen Z, Lyu Z, Lin Z, Zheng J, et al. Staphylococcus aureus PhoU Homologs Regulate Persister Formation and Virulence. Front Microbiol. 2020;11:865.
32. Akarsu H, Bordes P, Mansour M, Bigot D-J, Genevaux P, Falquet L. TASmania: a bacterial toxin-antitoxin systems database. PLoS Comput Biol. 2019;15(4):e1006946.
33. Pichon C, Felden B. Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc Natl Acad Sci U S A. 2005 Oct;102(40):14249–54.
34. Grady R, Hayes F. Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Mol Microbiol. 2003 Mar;47(5):1419–32.
35. Otto G. An arresting antitoxin. Nat Rev Microbiol. 2021;19(3):138–9.
36. Felden B, Augagneur Y. Diversity and Versatility in Small RNA-Mediated Regulation in Bacterial Pathogens. Vol. 12, Frontiers in Microbiology . 2021.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Osama Fahdil F, Alhusseini L. Correlation Between Toxin-Antitoxin Systems and Persistence States in Staphylococcus aureus Isolates. Journal of Basic Research in Medical Sciences 2024; 11 (4) :68-75
URL: http://jbrms.medilam.ac.ir/article-1-837-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 4 (9-2024) Back to browse issues page
مجله ی تحقیقات پایه در علوم پزشکی Journal of Basic Research in Medical Sciences
Persian site map - English site map - Created in 0.15 seconds with 41 queries by YEKTAWEB 4667