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Introduction: Despite advances in cancer therapy, many treatments result in significant side effects and
inconsistent remission. This review was aimed at exploring the potential of Auger electrons (AEs) as a
novel, highly localized approach to cancer treatment.

Materials & Methods: Relevant studies were reviewed to examine the mechanism of action of AEs emitted
from radioisotopes, their DNA-damaging effects, and their selective activity in cancer cells. The analysis
also included recent developments in cancer cell detection based on surface charges, radionuclide delivery
systems, and the role of proton tunneling and low-energy electrons in DNA disruption.

Results. Auger electrons, characterized by low energy and high linear energy transfer (LET), induce lethal
DNA damage with minimal impact on surrounding healthy tissue. They act through direct DNA
interaction or indirectly via water ionization. Detection methods based on cell surface charge properties
showed promise in improving cancer cell targeting. Additionally, advancements in radionuclide carriers
enhanced delivery precision. Insights into proton tunneling supported the biological relevance of low-
energy electrons in therapeutic applications.

Conclusion: Auger electron therapy offers a promising, targeted strategy for cancer treatment with
reduced collateral damage. Continued research is needed to refine delivery systems and better understand
electron-cell interactions to maximize therapeutic outcomes.
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Introduction

Electron capture (EC) is a process where an atom’s
nucleus captures one of its inner orbital electrons,
usually from the K-shell, converting a proton into a
neutron and emitting a neutrino (1). This process
occurs in certain unstable nuclei, known as
radionuclides, as they seek stability (2). The neutrino
carries away excess energy, and the resulting vacancy
in the electron shell is often filled by electrons from
higher energy levels, leading to the emission of
characteristic X-rays or Auger electrons (3) (Figure
1). Internal Conversion (IC) is another decay process
in which an unstable nucleus transfers its excess
energy directly to an inner orbital electron, ejecting it
from the atom (4).

This ejected electron, called an IC electron, creates a

vacancy in the inner shell, which is subsequently
filled by electrons from higher orbitals. The energy
difference between orbitals results in the emission of
Auger electrons or characteristic X-rays (4) (Figure
1).

Auger electrons, first observed by Pierre Auger in
1925, are low-energy electrons emitted following EC
or IC processes. These electrons typically have
energies ranging from 2 to 50 eV (5). However, Table
1 shows that certain radionuclides emit Auger
electrons with significantly higher average energies,
such as 193mPt (27.4 keV) and 195mPt (23.1 keV).
Auger electrons play a significant role in scientific
and medical fields, including cancer treatment and
imaging technologies (6).

In cancer treatment, Auger electron emitters (AES)
are used for targeted radiotherapy. Unlike traditional
high-energy radiation therapies that utilize photons or
beta particles, Auger therapy employs low-energy
electrons emitted by radionuclides localized near
cancer cells (7). This localized emission minimizes
damage to surrounding healthy tissues, making it an
attractive treatment option. Radionuclides like 111In
(average IC electron energy: 176.1 keV) and 195mPt
(average AE energy: 23.1 keV) are particularly
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effective due to their high energy deposition
capabilities (Table 1) (8).

The unique characteristic of Auger electrons is their
short range in biological tissues, typically a few
nanometers, and their ability to deposit high linear
energy transfer (LET) locally (8).

These properties ensure effective damage to cancer
cells while sparing adjacent healthy tissues,
enhancing the therapeutic index of radiotherapy (9).
Many radionuclides used in nuclear medicine
imaging, such as Technetium-99m (99mTc), lodine-
123 (123l1), Indium-111 (111In), and Gallium-67
(67Ga), undergo EC and IC decay processes (10).

Table 1 provides an overview of radionuclides that
emit Auger and IC electrons, summarizing their half-
lives, the number of electrons emitted per decay, and
corresponding energy levels (10,11). For instance:
99mTc emits an average of 0.9 Auger electrons per
decay, with an average energy of 0.2 keV (11). 123l
emits 13.7 Auger electrons per decay, with an
average energy of 7.2 keV (11). 111In emits IC
electrons with an average energy of 176.1 keV (Table
1) (12).

These properties make Auger electron-emitting
radionuclides ideal for minimizing collateral damage
in surrounding healthy tissues while delivering
localized, high-intensity energy to cancerous cells
(12). While most Auger electrons have energies
below 80 eV, some radionuclides emit electrons with
higher energies, contributing to their diverse
applications in targeted radiotherapy (13). The
energy of Auger electrons, measured in electron
volts, can be expressed mathematically as shown in
Equation. (1) (14):

Epee = Ex— EL, — EL,, — f

Auger
, Equation. (1) , (14).

where are the binding energies of the K, L1, and L2,3
electron shells, respectively, and is the work function,
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which is the minimum energy required to release an
electron from the surface of a material (14).

Materials and methods

This study is a review article; therefore, no
experimental materials or methods were used.
Instead, data and findings were gathered from various
research sources. The study evaluates Auger electron

emissions and their applications by analyzing results
from existing literature. Information was extracted
from published studies, employing statistical
evaluations where applicable. The review
incorporated data processed using statistical tools,
though no specific program, significance levels, or
direct calculations were involved in this wor

Auger
Electron
)

IC Electron

Figure 1. Auger electron emission can occur via electron capture (EC) or internal conversion (IC). In EC, a K-shell electron is

captured, creating a vacancy filled by an L-shell electron, leading to either X-ray emission or Auger electron ejection. This process

causes progressive vacancies in higher shells. In IC, unstable nuclei transfer energy to eject an electron, also resulting in an inner-

shell vacancy.

Table 1. Characteristics of radionuclides that emit Auger electrons. (The quantities of Auger electrons (AEs) and internal
conversion (IC) electrons were sourced from the MIRD Radionuclide and Decay Schemes (6,15)).

Average AE
energy per
decay (keV)

Radionuclide | Halflife | AEs/decay

Average IC | Average

Average IC electrons energy
energy per | electrons energy per IC

AE (keV) \decay released per | electron
decay (keV) (keV)
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125 57d 23 12 0.5 0.9 7.3 7.7
121 13h 13.7 7.2 0.5 0.2 21 222.6
“Ga 78h 5 6.6 1.3 0.3 29.7 14.1
“mTc 6h 4.4 0.9 0.2 1.1 15.2 13.8
Hn 67h 7.4 6.9 0.9 0.2 27.9 176.1
20071 73h 20.9 14.8 0.7 0.9 29.9 32.9
1Pt 2.8d 14 17.8 1.3 304 57.1 0.2
*mPt 43d 27.4 10.9 0.4 3 126.8 42.4
% mPt 4.0d 36.6 23.1 0.6 2.8 161.4 58.1
“Hg 64.1h 23.2 16.1 0.7 0.8 54.1 67
“"mHg 238h 19.4 13.5 0.7 1.6 203.5 127
1Sb 38.2h 23.7 8.9 0.4 0.8 17 20.2
SITD! 6.9d 0.9% 5.1° 5.7 1.4 36.7 26.2

a The quantities of Auger electrons (AEs) and internal conversion (IC) electrons for 161Tb were obtained from the National
Nuclear Data Center. (6, 16) b Calculation based solely on Auger electrons from the K and L shells. (6)

Detection of Cancer Cells Based on Their Surface
Charges

Although the negative surface charge of cancer cells
has been observed, it remains insufficiently
understood from a biophysical perspective. Studies
indicate that cancer cells exhibit negative surface
charges, a feature linked to their secretion of lactic
acid due to elevated glycolysis rates, which is a
hallmark of cancer metabolism (17). To utilize this
property, researchers have developed nanoprobes—
electrically charged, fluorescent, and
superparamagnetic—that can sensitively detect
cancer cells based on their surface charges. These
nanoprobes attach to cancer cells through
electrostatic  interactions, enabling  magnetic
separation and allowing for differentiation between
cancerous and normal cells based on metabolic
variations (17).

Tests conducted on 22 cancer cell types from various
organs revealed that all cancer cells exhibited
negative charges, strongly binding to positively
charged nanoprobes (18). Normal cells, in contrast,
showed minimal binding, suggesting they are neutral
or slightly positive. This differentiation demonstrates
the potential of charged nanoprobes for highly
selective cancer detection (18). Furthermore, cancer

cells can be identified, bound electrostatically, and
magnetically separated from blood using charged or
superparamagnetic nanoprobes (19). This approach
holds promise for removing circulating tumor cells
(CTCs) to reduce metastasis risks. If successfully
applied in clinical practice, these nanotechnologies
could revolutionize cancer detection and treatment
options (18, 19).

Cancer Cell DNA and Metabolism

The DNA of cancer cells does not differ in electrical
charge from that of normal cells, as DNA is
electrically neutral, with a balanced number of
negatively charged electrons and positively charged
protons. However, cancer cells exhibit distinct
metabolic differences compared to normal cells (20).
One significant metabolic change in cancer cells is
the Warburg effect, a reprogramming that shifts
energy production toward glycolysis, even in the
presence of oxygen (21). This metabolic adaptation
increases  glucose consumption and lactate
production and favors fermentation over oxidative
phosphorylation, the primary energy pathway in
normal cells (21, 22).

Although these changes may alter proton
concentrations and pH levels within cancer cells, they


https://jbrms.medilam.ac.ir/article-1-887-en.html

[ Downloaded from jbrms.medilam.ac.ir on 2026-01-28 ]

Auger Effect and DNA Damage in Cancer Therapy

do not impact the electrical charge of DNA (22).
While DNA neutrality in cancer cells remains
unchanged, these metabolic alterations can indirectly
influence  the  cellular  environment  (23).
Understanding the interplay between cancer cell
metabolism and their microenvironment can provide
critical insights for developing novel treatment
strategies (23).

Slow Electrons in Cancer Treatment and Auger
Resonance

lon beam therapy is a common method for treating
cancer, where charged atoms are directed towards
tumors to destroy cancer cells. The destruction is
primarily caused by slow-moving electrons, which
transfer energy to surrounding electrons (24).

A key and complex mechanism known as interatomic
Coulombic decay allows ions to transfer more energy
to adjacent atoms and release multiple slow electrons,
which are ideal for damaging cancer cell DNA (24).

Researchers at the Vienna University of Technology
demonstrated that this mechanism is crucial for
improving the effectiveness of ion therapy. Their
findings showed that when fast ions penetrate
materials, they create a cascade of slow electrons,
which are more likely to damage DNA than faster
electrons. These researchers demonstrated the
importance of interatomic Coulombic decay in
generating slow electrons using charged xenon ions
and graphene. This discovery is vital for refining
cancer treatments and protecting space crews from
cosmic radiation (24).

Researchers at the University of California developed
a nanoscale drug delivery system for treating cancers
that have metastasized to the central nervous system,
which is particularly challenging due to the blood-
brain barrier (25).

This nanocapsule, approximately one nanometer in
size, is coated with 2-methacryloyloxyethyl
phosphorylcholine (MPC), allowing it to penetrate
the barrier and release the cancer drug rituximab. In
mice, the nanocapsule effectively reaches
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metastasized cancer in the central nervous system.
This method eradicates B-cell lymphoma that has
metastasized to the central nervous system. This
innovative approach has the potential to treat various
cancers and brain diseases (25).

In 1997, it was predicted that an electronically
excited atom or molecule in a system with a weak
bond, such as a cluster with hydrogen or van der
Waals bonds, could transfer its excess energy to
neighboring species, resulting in the emission of a
low-energy electron (26).

This process, known as intermolecular Coulombic
decay (ICD), has been repeatedly observed and raises
questions about its role in DNA damage caused by
ionizing radiation, where low-energy electrons are
significant (27).

Recent suggestions have indicated that ICD can be
effectively induced by resonant excitation of the
nucleus of a target atom, which then undergoes Auger
decay, creating an ionized species with sufficient
energy for ICD (28).

This study experimentally demonstrated that Auger
resonance decay can induce ICD in nitrogen and
carbon monoxide dimers. Using ion and electron
momentum spectroscopy, the experiment showed
that ICD occurs in less than 20 femtoseconds, faster
than the dissociation of individual molecules. This
experimental confirmation may inspire new methods
for localized cancer radiotherapy using resonant X-
ray stimulation. The process involves initial resonant
excitation of a K-shell electron, followed by Auger
decay to an ionized state that can undergo ICD (28).

This mechanism was thoroughly investigated using
carbon monoxide and nitrogen dimers and showed
that resonant Auger decay leads to a continuous range
of kinetic energy values, consistent with ICD. The
measured kinetic energy release for nitrogen and
carbon monoxide dimers matched theoretical
estimates and supported the presence of ICD (28).
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The sequence of events depicted in FIGURE 2
illustrates the resonance-based Intermolecular
Coulombic Decay (ICD) mechanism. Panel (a) shows
the excitation of a molecule within a molecular dimer
through a resonant process. This excitation involves
the absorption of energy by the molecule’s nucleus,
indicated by the upward arrow (29).

In panel (b), this excited state of the nucleus decays
via a spectator Auger process, which leads to the
formation of a highly excited molecular ion state. The
energy transfer from the excited molecule to its

MIEEREREE R

neighbor is depicted in this phase. Finally, in panel
(c), the ICD process takes place, where the excitation
energy is transferred to the neighboring molecule,
resulting in the emission of a low-energy ICD
electron, as shown by the red arrow (29).

This electron emission is significant for the context
of cancer treatment, as it plays a role in damaging
DNA. This process is crucial for understanding how
localized radiotherapy can be enhanced using
resonant X-ray stimulation, as outlined in the study
by Li et al. (29).

Figure 2. The decay cascade mechanism involves the following steps: a) A molecule in the molecular dimer is core-excited. b) The

core-excited state decays through spectator Auger decay, leading to a highly excited molecular ion. c¢) Interatomic Coulombic Decay
(ICD) transfers the excitation energy to a neighboring molecule, which then emits a low-energy ICD electron (28).
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Attosecond Electron Bunches and Observing
Auger Electron Effects in DNA

An attosecond (107'® seconds) is a remarkably brief
unit of time, essential for studying the rapid changes
that occur within the realm of electrons (30). The
2023 Nobel Prize winners in Physics have created
light pulses so short that they are measured in
attoseconds, enabling the imaging of processes
within atoms and molecules (31). Attosecond pulses
offer valuable insights into internal material
processes and the identification of various events.
These pulses have been instrumental in revealing
details of atomic and molecular physics, with
potential applications in fields such as electronics and
medicine (32).

For example, attosecond pulses can be used to
examine molecules, which emit distinct measurable
signals. These signals act as fingerprints, indicating
specific molecular structures and potentially assisting
in medical diagnostics (32). This technique can be
employed to study the behavior of Auger electrons,
slow electrons, and low-energy electrons, and their
effects on cancer cell DNA. Attosecond pulses allow
for measuring the time it takes for an electron to
detach from an atom, providing insights into which
electron reactions are most effective at damaging
cancer cell DNA.

How do physicists use these ultrashort pulses to
create  attosecond-scale films of electrons?
Traditional films are made by capturing each moment
as a frame with a camera and stitching them together
to form a complete sequence (33). Attosecond
electron films utilize a similar concept. Attosecond
pulses act like flashes, illuminating electrons so that
researchers can capture their motion repeatedly—
similar to filming a scene. This technique, known as
pump-probe spectroscopy, involves a “pump” pulse
that initiates electron movement, starting the “film.”
A “probe” pulse then illuminates the electron at
various intervals after the pump pulse, allowing it to
be captured by a “camera,” such as a photoelectron
spectrometer (33). Although directly imaging

electron movement within atoms is challenging,
researchers have developed various advanced
microscope techniques to achieve this. In pump-
probe spectroscopy, the photoelectron spectrometer
can detect the number of electrons ejected from an
atom by the probe pulse, while a photon spectrometer
measures the amount of probe pulse absorbed by the
atom (34). These different “scenes” are then
combined to create attosecond films of electrons.
These films provide valuable insights into attosecond
electronic behavior, enhanced by theoretical models
(34).

For instance, some researchers have calculated the
position of electric charge in organic molecules at
different times on an attosecond scale, enabling
control of electric currents at a molecular level (35).
By analyzing these films with appropriate systems or
devices, significant progress can be made in cancer
treatment using Auger electrons, slow electrons, and
low-energy electrons. Such a device could function
similarly to a PET scan (positron emission
tomography), providing detailed information about
electron behavior (36). This data, if accurately
interpreted, can explain what occurs after Auger
electrons impact cancer cell DNA, potentially leading
to improved cancer treatments. Moreover, software
compatible with attosecond devices can be used for
data analysis (36).

Auger Electrons, Proton Tunneling in DNA, and
Cancer Cells

Low-energy electrons (LEE) and Auger electrons
both play significant roles in surface science and
material analysis, although there are differences in
their origins and production processes. Low-energy
electrons result from the inelastic scattering of
primary radiation, while Auger electrons are
produced through an internal atomic relaxation
process (37).

Despite these differences, their surface sensitivity
and influence on material properties provide common
ground for their applications and detection methods
(37). In FIGURE 3, the Watson-Crick model depicts
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DNA as a double helical structure composed of
sugar-phosphate chains held together by nucleotide
base pairs connected by hydrogen bonds. In this
model, adenine (A) pairs with thymine (T), and
guanine (G) pairs with cytosine (C), forming
complementary base pairs essential for DNA
replication and the transmission of genetic
information (38). The model also suggests that
mutations can occur when one of the bases undergoes
a rare tautomeric shift, leading to errors in the genetic
code. Experimental evidence indicates that chemical
compounds, such as nitrous acid, can induce
mutations by altering the proton-electron pairing in
DNA bases (38). Researchers have employed density
functional theory (DFT) and molecular dynamics to
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simulate  DNA damage caused by low-energy
electron attachment. These simulations focused on
anionic single nucleotides of DNA in an aqueous
environment, analyzing the influence of surrounding
water molecules on radiation damage mechanisms
(39).

The findings revealed that hydrogen bonding and the
protonation of nucleotides by water significantly alter
the energy barriers for DNA strand break reactions
(39, 40).

Furthermore, ionizing radiation can damage DNA in
living cells, potentially causing mutations and
diseases, including cancer (40).
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Figure 3. Hydrogen Bonding in DNA Nucleotides and Water Interactions. This figure illustrates the chemical structure of DNA

nucleotides (Guanine, Adenine, Cytosine, and Thymine) and their interaction with water molecules through hydrogen bonding.
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The pink-circled regions highlight water molecules forming hydrogen bonds with nucleotides, emphasizing the role of water in

stabilizing the DNA structure and influencing biological processes such as replication and repair (41).

In cancer cells, DNA is composed of nucleotides
arranged in a double helix structure. Each nucleotide
consists of a phosphate group, a sugar molecule
(deoxyribose), and one of four nitrogenous bases:
adenine (A), thymine (T), cytosine (C), or guanine
(G) (42).

The sequence of these bases encodes genetic
information that determines the characteristics and
functions of cancer cells. A defining feature of cancer
cells is the accumulation of mutations or genetic
alterations, which can lead to uncontrolled cell
growth and the invasion of neighboring tissues (41).
These mutations may result from environmental
factors, genetic predispositions, or errors during
DNA replication and repair processes (42, 43).
Additionally, cancer cells often exhibit changes in
other components of their genetic material, including
epigenetic modifications (chemical tags that regulate
gene expression) and structural or organizational
alterations in chromatin, the DNA-protein complex in
the nucleus (43). Understanding DNA damage
mechanisms at the molecular level is crucial for
improving cancer treatments such as radiotherapy
(44). While ionizing radiation can directly damage
DNA, low-energy electrons generated by the
radiolytic breakdown of water are particularly
harmful, causing more strand breaks than oxidative
damage by OH radicals (45).

Water plays a pivotal role in this process, as it alters
the potential experienced by excess electrons and
influences the dynamics of the resulting fragments
(46). Simulations suggest that water molecules can
either shield DNA from damage or enhance its
susceptibility to strand breaks (47).

The mechanism by which low-energy electrons
cause DNA strand breaks involves electron
attachment, forming transient negative ions.
Depending on energy barriers and anion resonance

states, this process may lead to dissociative electron
attachment (DEA) (47).

In one study, researchers employed density
functional theory and molecular dynamics
simulations to investigate DNA nucleotides in water,
focusing on protonation reactions and strand
breakage (48). The findings revealed that protonation
significantly influences DNA reactivity, as most
anions are likely to become protonated, thereby
modifying the barrier to strand breakage. This
highlights the critical role of the aqueous
environment in modulating DNA damage, where
protonation of DNA anions can potentially prevent
strand breaks (48). Hydrogen bonds are crucial for
the complementarity between nucleotide bases. The
properties of these bonds, including their strength and
formation, have been extensively studied (49). Proton
sharing between single-electron pairs is fundamental
to hydrogen bond formation, while the electronic
structure of atoms involved in these bonds highlights
the role of proton absorption (49). The phenomenon
of proton hopping, governed by activation energy and
quantum mechanics, and the concept of proton
tunneling, where a proton penetrates forbidden
regions, are significant in understanding hydrogen
bonding (49). Proton tunneling in DNA plays an
essential role in maintaining the stability of hydrogen
bonds within DNA base pairs, ensuring accurate
transmission of genetic information.

However, proton tunneling can also lead to base
transfer and mutations, which may affect the genetic
code (50). These mutations are linked to aging,
spontaneous  tumor  formation, and cancer
development, as they influence abnormal cell growth
and malignant tumor formation. External factors,
such as radiation and magnetic fields, also impact
proton tunneling in DNA, altering its biological
implications. This discussion underscores the
complex relationship between proton tunneling and
its influence on genetic stability and disease (50).


https://jbrms.medilam.ac.ir/article-1-887-en.html

[ Downloaded from jbrms.medilam.ac.ir on 2026-01-28 ]

Auger Effect and DNA Damage in Cancer Therapy

Conclusion

Auger electron therapy has been extensively studied
as a highly localized approach for cancer treatment.
Findings from multiple studies demonstrated that
Auger electrons exhibit high linear energy transfer
(LET) within a short range, making them effective in
inducing targeted DNA damage while minimizing
harm to healthy tissues (51).

Comparative analyses with conventional radiation
therapies revealed that Auger electron therapy
significantly reduces off-target effects and enhances
therapeutic efficacy in localized tumors (51).

The review also highlighted that radionuclides such
as 111In, 1231, and 195mPt have shown promising
results in clinical and preclinical studies, effectively
delivering Auger electrons to tumor sites.
Additionally, recent developments in nanoparticle-
based delivery systems and molecular targeting
strategies have further improved treatment precision
(52).

These advances suggest that Auger electron therapy
could be a powerful tool in oncology, particularly for
tumors located in sensitive regions where minimizing
damage to surrounding tissues is crucial (52).

However, despite these promising results, challenges
remain in fully understanding the underlying
mechanisms of Auger electron-induced DNA
damage, particularly regarding proton tunneling and
secondary molecular interactions. Further studies are
required to clarify these pathways and optimize
radionuclide delivery (52).

Future developments should also focus on improving
imaging techniques, integrating Auger therapy with
positron emission tomography (PET), and exploring
attosecond pulse technology to study electron
interactions at the atomic level. These advancements
could lead to more personalized and efficient cancer
treatment strategies, ultimately expanding the clinical
applications of Auger electron therapy.
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