[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
About Journal::
Editorial Board::
Articles Archive::
Indexing Databases::
To Authors::
To Reviewers::
Registration::
Submit Your Article::
Policies and Publication Ethics::
Archiving Policy::
Site Facilities::
Contact Us::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2020
Citations835618
h-index1211
i10-index2014
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Search published articles ::
Showing 1 results for Khayampour

Nadia Khayampour , Maghsoud Peeri, Mohammad Ali Azarbayjani ,
Volume 10, Issue 4 (12-2023)
Abstract

Introduction: This study investigates the impact of two high-intensity interval training (HIIT) programs on PGC-1α, p53, and citrate synthase (CS) proteins within cardiomyocytes of male type 2 diabetic rats, aiming to discern potential molecular mechanisms influencing cardiac health.
Material & Methods: Twenty-four male Wistar rats were randomly assigned to control (NC), diabetic control (DC), diabetic with type 1 HIIT (HIIT-1), and diabetic with type 2 HIIT (HIIT-2) groups. Streptozotocin (STZ) induced type 2 diabetes, excluding the NC group. A four-week HIIT intervention, six sessions per week, preceded the analysis of heart tissue for PGC-1α, p53, and CS protein levels. Statistical analysis employed GraphPad Prism software version 8 and one-way ANOVA (P < 0.05).
Results: Both HIIT-1 (p=0.004) and HIIT-2 (p=0.007) groups exhibited significantly elevated cardiac PGC-1α levels compared to DC. CS levels increased notably in HIIT-1 (p=0.001) and HIIT-2 (p<0.001), with HIIT-2 surpassing HIIT-1 significantly (p=0.010). Concurrently, p53 levels significantly decreased in both HIIT-1 (p=0.005) and HIIT-2 (p=0.001) groups compared to DC.
Conclusion: Exercise training (HIIT) positively influences cardiac metabolism, evident in PGC-1α and CS upregulation and p53 downregulation. While these findings provide valuable insights, further exploration is crucial for a comprehensive understanding of the underlying molecular mechanisms. This study advances our understanding of optimizing exercise interventions for improved cardiac health in type 2 diabetes.


Page 1 from 1     

مجله ی تحقیقات پایه در علوم پزشکی Journal of Basic Research in Medical Sciences
Persian site map - English site map - Created in 0.17 seconds with 29 queries by YEKTAWEB 4700