logo
Volume 13, Issue 1 (1-2026)                   jbrms 2026, 13(1): 100-109 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farhadian S, Noori-Zadeh A, Seidkhani-Nahal A, Hatefi M. Clinical Utility of Serum Opalin in Traumatic Brain Injury. jbrms 2026; 13 (1) :100-109
URL: http://jbrms.medilam.ac.ir/article-1-1065-en.html
Department of Clinical Biochemistry, Faculty of Medicine, Ilam University Medical Sciences, Ilam, Iran
Abstract:   (58 Views)
Introduction: Despite traumatic brain injury (TBI) being a leading cause of global morbidity and mortality, it lacks easy-to-access or portable, reliable biomarkers for early diagnosis. This study was designed to evaluate serum Opalin, a CNS-specific protein, in drug-naïve TBI patients.
Materials & Methods: Conducted as a prospective case-control study at a tertiary care setting, 60 drug-naïve TBI patients and 60 healthy controls (HC) were evaluated for serum Opalin levels.
Results:  TBI patients showed significant alterations in serum Opalin levels. Opalin demonstrated high diagnostic accuracy (AUC: 0.943) with 86.67% sensitivity and 95% specificity at a cut-off of 321.7 pg/mL. Strong correlations were found between Opalin levels and TBI severity (using CT scan and Glasgow coma scale score).
Conclusion:  This research underscores the potential application of serum Opalin to augment current evaluation methods like CT scan and Glasgow coma scale evaluations.
 
Full-Text [PDF 473 kb]   (40 Downloads)    
Type of Study: Research | Subject: Clinical Biochemistry
Received: 2025/12/17 | Accepted: 2025/12/22 | Published: 2026/01/4

References
1. Sarkis GA, Zhu T, Yang Z, Li X, Shi Y, Rubenstein R, et al. Characterization and standardization of multiassay platforms for four commonly studied traumatic brain injury protein biomarkers: a TBI Endpoints Development Study. Biomarkers in medicine. 2021;15(18):1721-32. doi: [DOI:10.2217/bmm-2021-0284.]
2. Tsakiris C, Siempis T, Lianos GD, Vlachodimitropoulou L, Voulgaris S, Alexiou GA. Blood biomarkers: a new solution to the silent pandemic of traumatic brain injury. Biomarkers in medicine. 2023;17(19):783-5. doi: [DOI:10.2217/bmm-2023-0444.]
3. Maas AIR, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, et al. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022;21(11):1004-60. doi: [DOI:10.1016/s1474-4422(22)00309-x.]
4. Rogan A, O'Sullivan MB, Holley A, McQuade D, Larsen P. Can serum biomarkers be used to rule out significant intracranial pathology in emergency department patients with mild traumatic brain injury? A Systemic Review & Meta-Analysis. Injury. 2022;53(2):259-71. doi: [DOI:10.1016/j.injury.2021.10.015.]
5. Janigro D, Mondello S, Posti JP, Unden J. GFAP and S100B: What You Always Wanted to Know and Never Dared to Ask. Front Neurol. 2022;13:835597. doi: [DOI:10.3389/fneur.2022.835597.]
6. Yoshikawa F, Sato Y, Tohyama K, Akagi T, Hashikawa T, Nagakura-Takagi Y, et al. Opalin, a transmembrane sialylglycoprotein located in the central nervous system myelin paranodal loop membrane. J Biol Chem. 2008;283(30):20830-40. doi: [DOI:10.1074/jbc.M801314200.]
7. Yoshikawa F, Sato Y, Tohyama K, Akagi T, Furuse T, Sadakata T, et al. Mammalian-Specific Central Myelin Protein Opalin Is Redundant for Normal Myelination: Structural and Behavioral Assessments. PLoS One. 2016;11(11):e0166732. doi: [DOI:10.1371/journal.pone.0166732.]
8. Kippert A, Trajkovic K, Fitzner D, Opitz L, Simons M. Identification of Tmem10/Opalin as a novel marker for oligodendrocytes using gene expression profiling. BMC Neurosci. 2008;9:40. doi: [DOI:10.1186/1471-2202-9-40.]
9. Atee M, Hoti K, Hughes JD. Psychometric evaluation of the electronic pain assessment tool: an innovative instrument for individuals with moderate-to-severe dementia. Dementia and Geriatric Cognitive Disorders. 2018;44(5-6):256-67. doi: [DOI:10.1159/000485377.]
10. Posti JP, Tenovuo O. Blood-based biomarkers and traumatic brain injury—A clinical perspective. Acta Neurologica Scandinavica. 2022;146(4):389-99. doi: [DOI:10.1111/ane.13620.]
11. Gan ZS, Stein SC, Swanson R, Guan S, Garcia L, Mehta D, et al. Blood Biomarkers for Traumatic Brain Injury: A Quantitative Assessment of Diagnostic and Prognostic Accuracy. Frontiers in Neurology. 2019;10. doi: [DOI:10.3389/fneur.2019.00446.]
12. Borgens RB, Liu-Snyder P. Understanding Secondary Injury. The Quarterly Review of Biology. 2012;87(2):89-127. doi: [DOI:10.1086/665457.]
13. Thapa K, Khan H, Singh TG, Kaur A. Traumatic Brain Injury: Mechanistic Insight on Pathophysiology and Potential Therapeutic Targets. Journal of Molecular Neuroscience. 2021;71(9):1725-42. doi: [DOI:10.1007/s12031-021-01841-7.]
14. Alluri H, Wiggins-Dohlvik K, Davis ML, Huang JH, Tharakan B. Blood–brain barrier dysfunction following traumatic brain injury. Metabolic Brain Disease. 2015;30(5):1093-104. doi: [DOI:10.1007/s11011-015-9651-7.]
15. Dutta T, Santra S, Majumdar D, Mandal S. An applicative substantiation of the Radon Transform appertain to Image Segmentation for the Prognosis of Metastatic Oncogenesis vis-a-vis Lung Cancer: a Boon in the Novel Emergences of Artificial Intelligence Manoeuvred Amelioration. International Journal of Information Technology, Research and Applications. 2024;3(1):35-43. doi: [DOI:10.59461/ijitra.v3i1.91.]
16. Santing JAL, Hopman JH, Verheul RJ, van der Naalt J, van den Brand CL, Jellema K. Clinical value of S100B in detecting intracranial injury in elderly patients with mild traumatic brain injury. Injury. 2024;55(3):111313. doi: [DOI:10.1016/j.injury.2024.111313.]
17. Wagner R, Haider T, Babeluk R, Marhold F, Hajdu S, Antoni A. Is there a clinical benefit of S100B for the management of mild traumatic brain injury? Journal of Neurosurgery. 2025:1-7. doi: [DOI:10.3171/2024.10.JNS241516.]
18. Michinaga S, Koyama Y. Pathophysiological responses and roles of astrocytes in traumatic brain injury. International journal of molecular sciences. 2021;22(12):6418. doi: [DOI:10.3390/ijms22126418.]
19. Lagares A, de la Cruz J, Terrisse H, Mejan O, Pavlov V, Vermorel C, et al. An automated blood test for glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) to predict the absence of intracranial lesions on head CT in adult patients with mild traumatic brain injury: BRAINI, a multicentre observational study in Europe. eBioMedicine. 2024;110. doi: [DOI:10.1016/j.ebiom.2024.105477.]
20. Oris C, Bouillon-Minois J-B, Kahouadji S, Pereira B, Dhaiby G, Defrance VB, et al. S100B vs. “GFAP and UCH-L1” assays in the management of mTBI patients. Clinical Chemistry and Laboratory Medicine (CCLM). 2024;62(5):891-9. doi: [DOI:doi:10.1515/cclm-2023-1238.]
21. Silvestro S, Raffaele I, Quartarone A, Mazzon E. Innovative insights into traumatic brain injuries: biomarkers and new pharmacological targets. International Journal of Molecular Sciences. 2024;25(4):2372. doi: [DOI:10.3390/ijms25042372.]
22. Hardt R, Jordans S, Winter D, Gieselmann V, Wang-Eckhardt L, Eckhardt M. Decreased turnover of the CNS myelin protein Opalin in a mouse model of hereditary spastic paraplegia 35. Human Molecular Genetics. 2020;29(22):3616-30. doi: [DOI:10.1093/hmg/ddaa246.]
23. Faisal M, Vedin T, Edelhamre M, Forberg JL. Diagnostic performance of biomarker S100B and guideline adherence in routine care of mild head trauma. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2023;31(1):3. doi: [DOI:10.1186/s13049-022-01062-w.]
24. Janigro D, Mondello S, Posti JP, Unden J. GFAP and S100B: what you always wanted to know and never dared to ask. Frontiers in neurology. 2022;13:835597. doi: [DOI:10.3389/fneur.2022.835597.]
25. Thelin EP, Nelson DW, Bellander B-M. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta neurochirurgica. 2017;159:209-25. doi: [DOI:10.1007/s00701-016-3046-3.]
26. Okonkwo DO, Puffer RC, Puccio AM, Yuh EL, Yue JK, Diaz-Arrastia R, et al. Point-of-care platform blood biomarker testing of glial fibrillary acidic protein versus S100 calcium-binding protein B for prediction of traumatic brain injuries: a transforming research and clinical knowledge in traumatic brain injury study. Journal of neurotrauma. 2020;37(23):2460-7. doi: [DOI:10.1089/neu.2020.7140.]
27. Thelin EP, Zeiler FA, Ercole A, Mondello S, Büki A, Bellander B-M, et al. Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: a systematic review. Frontiers in neurology. 2017;8:300. doi: [DOI:10.3389/fneur.2017.00300.]
28. Ozcelikay-Akyildiz G, Karadurmus L, Cetinkaya A, Uludag İ, Ozcan B, Unal MA, et al. The Evaluation of Clinical Applications for the Detection of the Alzheimer's Disease Biomarker GFAP. Crit Rev Anal Chem. 2024:1-12. doi: [DOI:10.1080/10408347.2024.2393874.]
29. Lindblad C, Nelson DW, Zeiler FA, Ercole A, Ghatan PH, von Horn H, et al. Influence of blood–brain barrier integrity on brain protein biomarker clearance in severe traumatic brain injury: a longitudinal prospective study. Journal of Neurotrauma. 2020;37(12):1381-91. doi: [DOI:10.1089/neu.2019.6741.]
30. Dan YR, Chiam K-H. Discovery of plasma biomarkers related to blood-brain barrier dysregulation in Alzheimer’s disease. Frontiers in Bioinformatics. 2024;4:1463001. doi: [DOI:10.3389/fbinf.2024.1463001.]
31. Kim SJ, Moon GJ, Bang OY. Biomarkers for stroke. Journal of stroke. 2013;15(1):27. doi: [DOI:10.5853/jos.2013.15.1.27.]
32. O'Connell GC, Smothers CG, Gandhi SA. Newly-identified blood biomarkers of neurological damage are correlated with infarct volume in patients with acute ischemic stroke. Journal of Clinical Neuroscience. 2021;94:107-13. doi: [DOI:10.1016/j.jocn.2021.10.015.]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.