1. Bansi J, Bloch W, Gamper U, Kesselring J. Training in MS: influence of two different endurance training protocols (aquatic versus overland) on cytokine and neurotrophin concentrations during three week randomized controlled trial. Mult Scler J. 2013;19(5):613-21. [
DOI:10.1177/1352458512458605.]
2. Ransohoff RM, Hafler DA, Lucchinetti CF. Multiple sclerosis—a quiet revolution. Nat Rev Neurol. 2015;11(3):134. [
DOI:10.1038/nrneurol.2015.14.]
3. Mokhtarzade M, Ranjbar R, Majdinasab N, Patel D, Shamsi MM. Effect of aerobic interval training on serum IL-10, TNFα, and adipokines levels in women with multiple sclerosis: possible relations with fatigue and quality of life. Endocrine. 2017;57(2):262-71. [
DOI:10.1007/s12020-017-1337-y.]
4. Jørgensen M, Kjølhede T, Dalgas U, Hvid L. Plasma brain-derived neurotrophic factor (BDNF) and sphingosine-1-phosphat (S1P) are NOT the main mediators of neuroprotection induced by resistance training in persons with multiple sclerosis—A randomized controlled trial. Mult Scler Relat Disord. 2019; 31:106-11. [
DOI:10.1016/j.msard.2019.03.029.]
5. White LJ, Castellano V. Training and brain health—implications for multiple sclerosis. Sports Med. 2008;38(2):91-100. [
DOI:10.2165/00007256-200838020-00001.]
6. Motl RW, Pilutti LA. The benefits of training in multiple sclerosis. Nat. Rev. Neurol.2012;8(9):487-97. [
DOI:10.1038/nrneurol.2012.136.]
7. Gold SM, Schulz K-H, Hartmann S, Mladek M, Lang UE, Hellweg R, et al. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute training in multiple sclerosis and controls. J Neuroimmunol. 2003;138(1-2):99-105. [
DOI:10.1016/s0165-5728(03)00121-8.]
8. Motl RW, Sandroff BM, Kwakkel G, Dalgas U, Feinstein A, Heesen C, et al. Training in patients with multiple sclerosis. Lancet Neurol. 2017;16(10):848-56. [
DOI:10.1016/S1474-4422(17)30281-8.]
9. Waschbisch A, Wenny I, Tallner A, Schwab S, Pfeifer K, Mäurer M. Physical activity in multiple sclerosis: a comparative study of vitamin D, brain-derived neurotrophic factor and regulatory T cell populations. Eur Neurol. 2012;68(2):122-8. [
DOI:10.1159/000337904.]
10. Wens I, Keytsman C, Deckx N, Cools N, Dalgas U, Eijnde BO. Brain derived neurotrophic factor in multiple sclerosis: effect of 24 weeks’ endurance and resistance training. Eur J Neurol. 2016;23(6):1028-35. [
DOI:10.1111/ene.12976.]
11. Negaresh R, Motl R, Zimmer P, Mokhtarzade M, Baker J. Effects of training on multiple sclerosis biomarkers of central nervous system and disease status: a systematic review of intervention studies. Eur J Neurol. 2019;26(5):711-21. [
DOI:10.1111/ene.13929.]
12. Gentile A, Musella A, De Vito F, Rizzo FR, Fresegna D, Bullitta S, et al. Immunomodulatory effects of training in experimental multiple sclerosis. Front Immunol. 2019;10. [
DOI:10.3389/fimmu.2019.02197.]
13. Işık H, Çevikbaş A, Gürer ÜS, Kıran B, Üresin Y, Rayaman P, et al. Potential adjuvant effects of Nigella sativa seeds to improve specific immunotherapy in allergic rhinitis patients. Med Princ Pract. 2010;19(3):206-11. [
DOI:10.1159/000285289.]
14. Javidi S, Razavi BM, Hosseinzadeh H. A review of neuropharmacology effects of Nigella sativa and its main component, thymoquinone. Phytother Res. 2016;30(8):1219-29. [
DOI:10.1002/ptr.5634.]
15. Darakhshan S, Tahvilian R, Colagar AH, Babolsar I. Nigella sativa: A plant with multiple therapeutic implications. Int J Pharmacognosy. 2015;2(5):190-14. DOI: 10.13040/IJPSR.0975-8232.IJP.2(5).190-14.
16. Efendi H. Clinically isolated syndromes: Clinical characteristics, differential diagnosis, and management. Noro Psikiyatr Ars. 2015;52(Suppl 1): S1. [
DOI:10.5152/npa.2015.12608.]
17. Landers MR, Kinney JW, van Breukelen F. Forced training before or after induction of 6-OHDA-mediated nigrostriatal insult does not mitigate behavioral asymmetry in a hemiparkinsonian rat model. Brain Res. 2014; 1543:263-70. [
DOI:10.1016/j.brainres.2013.10.054.]
18. Briken S, Rosenkranz SC, Keminer O, Patra S, Ketels G, Heesen C, et al. Effects of training on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. J Neuroimmunol. 2016; 299:53-8. [
DOI:10.1016/j.jneuroim.2016.08.007.]
19. Mohammadi-Rad M, Ghasemi N, Aliomrani M. Evaluation of apamin effects on myelination process in C57BL/6 mice model of multiple sclerosis. Res Pharm Sci. 2019;14(5):424. [
DOI:10.4103/1735-5362.268203.]
20. Wootla B, Watzlawik JO, Stavropoulos N, Wittenberg NJ, Dasari H, Abdelrahim MA, et al. Recent advances in monoclonal antibody therapies for multiple sclerosis. Expert Opin Biol Ther. 2016;16(6):827-39. [
DOI:10.1517/14712598.2016.1158809.]
21. Noor NA, Fahmy HM, Mohammed FF, Elsayed AA, Radwan NM. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats. Int J Clin Exp Pathol. 2015;8(6):6269.
22. Jensen SK, Michaels NJ, Ilyntskyy S, Keough MB, Kovalchuk O, Yong VW. Multimodal enhancement of remyelination by training with a pivotal role for oligodendroglial PGC1α. Cell Rep. 2018;24(12):3167-79. [
DOI:10.1016/j.celrep.2018.08.060.]
23. Mandolesi G, Bullitta S, Fresegna D, De Vito F, Rizzo FR, Musella A, et al. Voluntary running wheel attenuates motor deterioration and brain damage in cuprizone-induced demyelination. Neurobiol Dis. 2019; 129:102-17. [
DOI:10.1016/j.nbd.2019.05.010.]
24. Moradbeygi K, Parviz M, Rezaeizadeh H, Zargaran A, Sahraian MA, Mehrabadi S, et al. Anti-LINGO-1 improved remyelination and neurobehavioral deficit in cuprizone-induced demyelination. Iran J Basic Med Sci. 2021;24(7):900. [
DOI:10.22038/ijbms.2021.53531.12043.]