[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
About Journal::
Editorial Board::
Articles Archive::
Indexing Databases::
To Authors::
To Reviewers::
Registration::
Submit Your Article::
Policies and Publication Ethics::
Archiving Policy::
Site Facilities::
Contact Us::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Citations733594
h-index1110
i10-index1513
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 11, Issue 1 (1-2024) ::
2024, 11(1): 79-85 Back to browse issues page
Are bacterial persister cells really the cause of infection relapse/recalcitrance?
Behrooz Sadeghi Kalani , Parisa Asadollahi
Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran - Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran , asadolahi.p@gmail.com
Abstract:   (146 Views)
Introduction: Looking into the literature, many articles accuse bacterial persister cells as important causes of infection relapse/recalcitrance. This opinion paper, highlights the knowledge gaps and scientific misconceptions in experimental procedures regarding the role of persisters in relapse/recalcitrance of infections and recommends a roadmap for investigations in this field.
Conclusion:  It is debated in this paper, that unless the queries and missing points are addressed clearly, persisters cannot be stigmatized as the culprit of infection relapse/recalcitrance.
Keywords: Persister cells, Bacteria, Relapse, Recalcitrance, Infection
Full-Text [PDF 801 kb]   (66 Downloads)    
Type of Study: Research | Subject: Microbiology
Received: 2023/12/16 | Accepted: 2024/01/29 | Published: 2024/01/20
References
1. Cañas-Duarte SJ, Restrepo S, Pedraza JM. Novel protocol for persister cells isolation. PLoS One. 2014 Feb 21;9(2):e88660. doi: 10.1371/journal.pone.0088660. PMID: 24586365.
2. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004 Sep 10;305(5690):1622-5. doi: 10.1126/science.1099390. Epub 2004 Aug 12. PMID: 15308767.
3. Bigger JW. The bactericidal action of penicillin on Staphylococcus pyogenes. Irish J Med Sci. 1944 Nov;19(11):553-68.
4. Henry TC, Brynildsen MP. Development of Persister-FACSeq: a method to massively parallelize quantification of persister physiology and its heterogeneity. Sci Rep. 2016. 6(1): p. 1-17. doi: 10.1038/srep25100.
5. Gefen, O. and N.Q. Balaban, The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol. Rev., 2009. 33(4): p. 704-717.
6. Brauner A, Shoresh N, Fridman O, Balaban NQ. An Experimental Framework for Quantifying Bacterial Tolerance. Biophys J. 2017 Jun 20;112(12):2664-2671. doi: 10.1016/j.bpj.2017.05.014.
7. Kaldalu N, Hauryliuk V, Turnbull KJ, La Mensa A, Putrinš M, Tenson T. In Vitro Studies of Persister Cells. Microbiol Mol Biol Rev. 2020 Nov 11;84(4):e00070-20. doi: 10.1128/MMBR.00070-20.
8. Tuomanen E, Durack DT, Tomasz A. Antibiotic tolerance among clinical isolates of bacteria. Antimicrob Agents Chemother. 1986 Oct;30(4):521-7. doi: 10.1128/AAC.30.4.521.
9. Mulcahy LR, Burns JL, Lory S, Lewis K. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol. 2010 Dec;192(23):6191-9. doi: 10.1128/JB.01651-09.
10. Bahmaninejad P, Ghafourian S, Mahmoudi M, Maleki A, Sadeghifard N, Badakhsh B. Persister cells as a possible cause of antibiotic therapy failure in Helicobacter pylori. JGH Open. 2021 Mar 18;5(4):493-497. doi: 10.1002/jgh3.12527.
11. Wallis RS, Patil S, Cheon SH, Edmonds K, Phillips M, Perkins MD, et al. Drug tolerance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1999 Nov;43(11):2600-6. doi: 10.1128/AAC.43.11.2600.
12. Bartell JA, Cameron DR, Mojsoska B, Haagensen JAJ, Pressler T, Sommer LM, et al. Bacterial persisters in long-term infection: Emergence and fitness in a complex host environment. PLoS Pathog. 2020 Dec 14;16(12):e1009112. doi: 10.1371/journal.ppat.1009112.
13. Helaine S, Kugelberg E. Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol. 2014 Jul;22(7):417-24. doi: 10.1016/j.tim.2014.03.008. Epub 2014 Apr 23.
14. Wainwright J, Hobbs G, Nakouti I. Persister cells: formation, resuscitation and combative therapies. Arch Microbiol. 2021 Dec;203(10):5899-5906. doi: 10.1007/s00203-021-02585-z. Epub 2021 Nov 5.
15. Fauvart M, De Groote VN, Michiels J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol. 2011 Jun;60(Pt 6):699-709. doi: 10.1099/jmm.0.030932-0. Epub 2011 Apr 1.
16. Bamford RA, Smith A, Metz J, Glover G, Titball RW, Pagliara S. Investigating the physiology of viable but non-culturable bacteria by microfluidics and time-lapse microscopy. BMC Biol. 2017 Dec 21;15(1):121. doi: 10.1186/s12915-017-0465-4.
17. Ayrapetyan M, Williams T, Oliver JD. Relationship between the Viable but Nonculturable State and Antibiotic Persister Cells. J Bacteriol. 2018 Sep 24;200(20):e00249-18. doi: 10.1128/JB.00249-18.
18. Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013 Nov 28;6(12):1543-75. doi: 10.3390/ph6121543.
19. Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, et al., Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol, 2019. 17(7): p. 441-448.
20. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K., Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett., 2004. 230(1): p. 13-18.
21. Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel). 2014 May 13;7(5):545-94. doi: 10.3390/ph7050545. PMID: 24828484; PMCID: PMC4035769.
22. Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des. 2009;15(21):2377-92. doi: 10.2174/138161209788682325. PMID: 19601838; PMCID: PMC2750833.
23. Liu S, Brul S, Zaat SAJ. Bacterial Persister-Cells and Spores in the Food Chain: Their Potential Inactivation by Antimicrobial Peptides (AMPs). Int J Mol Sci. 2020 Nov 27;21(23):8967. doi: 10.3390/ijms21238967. PMID: 33260797; PMCID: PMC7731242.
24. de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, et al., The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med. , 2018. 10(423): p. eaan4044.
25. de la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock RE. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 2014 May 22;10(5):e1004152. doi: 10.1371/journal.ppat.1004152. PMID: 24852171; PMCID: PMC4031209.
26. Syal K, Flentie K, Bhardwaj N, Maiti K, Jayaraman N, Stallings CL, Chatterji D. Synthetic (p)ppGpp Analogue Is an Inhibitor of Stringent Response in Mycobacteria. Antimicrob Agents Chemother. 2017 May 24;61(6):e00443-17. doi: 10.1128/AAC.00443-17. PMID: 28396544; PMCID: PMC5444170.
27. Njire M, Wang N, Wang B, Tan Y, Cai X, Liu Y, et al., Pyrazinoic acid inhibits a bifunctional enzyme in Mycobacterium tuberculosis. Antimicrob Agents Chemother., 2017. 61(7): p. e00070-17.
28. KAGEYAMA M. STUDIES OF A PYOCIN. I. PHYSICAL AND CHEMICAL PROPERTIES. J Biochem. 1964 Jan;55:49-53. doi: 10.1093/oxfordjournals.jbchem.a127839.
29. Blackwell, C.C. and J.A. Law, Typing of non-serogroupable Neisseria meningitidis by means of sensitivity to R-type pyocines of Pseudomonas aeruginosa. Journal of Infection, 1981. 3(4): p. 370-378.
30. Blackwell, C.C., F. Winstanley, and W.T. Brunton, Sensitivity of thermophilic campylobacters to R-type pyocines of Pseudomonas aeruginosa. Journal of J. Med. Microbiol. Medical Microbiology, 1982. 15(2): p. 247-251.
31. Campagnari AA, Karalus R, Apicella M, Melaugh W, Lesse AJ, Gibson BW. Use of pyocin to select a Haemophilus ducreyi variant defective in lipooligosaccharide biosynthesis. Infect Immun. 1994 Jun;62(6):2379-86. doi: 10.1128/iai.62.6.2379-2386.1994.
32. Filiatrault MJ, Munson RS Jr, Campagnari AA. Genetic analysis of a pyocin-resistant lipooligosaccharide (LOS) mutant of Haemophilus ducreyi: restoration of full-length LOS restores pyocin sensitivity. J Bacteriol. 2001 Oct;183(19):5756-61. doi: 10.1128/JB.183.19.5756-5761.2001.
33. Morse SA, Jones BV, Lysko PG. Pyocin inhibition of Neisseria gonorrhoeae: mechanism of action. Antimicrob Agents Chemother. 1980 Sep;18(3):416-23. doi: 10.1128/AAC.18.3.416.
34. Morse SA, Vaughan P, Johnson D, Iglewski BH. Inhibition of Neisseria gonorrhoeae by a bacteriocin from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1976 Aug;10(2):354-62. doi: 10.1128/AAC.10.2.354.
35. Birmingham VA, Pattee PA. Genetic transformation in Staphylococcus aureus: isolation and characterization of a competence-conferring factor from bacteriophage 80 alpha lysates. J Bacteriol. 1981 Oct;148(1):301-7. doi: 10.1128/jb.148.1.301-307.1981.
36. Coetzee HL, De Klerk HC, Coetzee JN, Smit JA. Bacteriophage-tail-like particles associated with intra-species killing of Proteus vulgaris. J Gen Virol. 1968 Jan;2(1):29-36. doi: 10.1099/0022-1317-2-1-29.
37. Jabrane A, Sabri A, Compère P, Jacques P, Vandenberghe I, Van Beeumen J, Thonart P. Characterization of serracin P, a phage-tail-like bacteriocin, and its activity against Erwinia amylovora, the fire blight pathogen. Appl Environ Microbiol. 2002 Nov;68(11):5704-10. doi: 10.1128/AEM.68.11.5704-5710.2002.
38. Strauch E, Kaspar H, Schaudinn C, Dersch P, Madela K, Gewinner C, Hertwig S, Wecke J, Appel B. Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Appl Environ Microbiol. 2001 Dec;67(12):5634-42. doi: 10.1128/AEM.67.12.5634-5642.2001.
39. Zink R, Loessner MJ, Scherer S. Characterization of cryptic prophages (monocins) in Listeria and sequence analysis of a holin/endolysin gene. Microbiology (Reading). 1995 Oct;141 ( Pt 10):2577-84. doi: 10.1099/13500872-141-10-2577.
40. Pérez-Ibarreche M, Castellano P, Leclercq A, Vignolo G. Control of Listeria monocytogenes biofilms on industrial surfaces by the bacteriocin-producing Lactobacillus sakei CRL1862. FEMS Microbiol Lett. 2016 Jun;363(12):fnw118. doi: 10.1093/femsle/fnw118. Epub 2016 May 1. Erratum in: FEMS Microbiol Lett. 2019 May 1;366(10).
41. Al-Seraih A, Belguesmia Y, Baah J, Szunerits S, Boukherroub R, Drider D. Enterocin B3A-B3B produced by LAB collected from infant faeces: potential utilization in the food industry for Listeria monocytogenes biofilm management. Antonie Van Leeuwenhoek. 2017 Feb;110(2):205-219. doi: 10.1007/s10482-016-0791-5. Epub 2016 Nov 22.
42. Casciaro B, Loffredo MR, Cappiello F, Fabiano G, Torrini L, Mangoni ML. The Antimicrobial Peptide Temporin G: Anti-Biofilm, Anti-Persister Activities, and Potentiator Effect of Tobramycin Efficacy Against Staphylococcus aureus. Int J Mol Sci. 2020 Dec 10;21(24):9410. doi: 10.3390/ijms21249410.
43. Liu S, Brul S, Zaat SAJ. Isolation of Persister Cells of Bacillus subtilis and Determination of Their Susceptibility to Antimicrobial Peptides. Int J Mol Sci. 2021 Sep 17;22(18):10059. doi: 10.3390/ijms221810059.
44. Wei G, He Y. Antibacterial and Antibiofilm Activities of Novel Cyclic Peptides against Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci. 2022 Jul 21;23(14):8029. doi: 10.3390/ijms23148029.
45. Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 2014 Jan 10;343(6167):204-8. doi: 10.1126/science.1244705.
46. Mouton JM, Helaine S, Holden DW, Sampson SL. Elucidating population-wide mycobacterial replication dynamics at the single-cell level. Microbiology (Reading). 2016 Jun;162(6):966-978. doi: 10.1099/mic.0.000288. Epub 2016 Mar 30.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi Kalani B, Asadollahi P. Are bacterial persister cells really the cause of infection relapse/recalcitrance?. Journal of Basic Research in Medical Sciences 2024; 11 (1) :79-85
URL: http://jbrms.medilam.ac.ir/article-1-803-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 1 (1-2024) Back to browse issues page
مجله ی تحقیقات پایه در علوم پزشکی Journal of Basic Research in Medical Sciences
Persian site map - English site map - Created in 0.15 seconds with 41 queries by YEKTAWEB 4646