logo
Volume 12, Issue 3 (5-2025)                   jbrms 2025, 12(3): 1-9 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hemati S, Kheiry M, Maleki F. Causative Uropathogenic Bacteria and Their Antimicrobial Susceptibility Patterns in Diabetic Patients with Urinary Tract Infection in Ilam, Western of Iran. jbrms 2025; 12 (3) :1-9
URL: http://jbrms.medilam.ac.ir/article-1-819-en.html
Clinical Research Development Unit, Shahid Mostafa Khomeini Hospital, Ilam University of medical Sciences, Ilam, Iran , Fmaleki531@gmail.com
Abstract:   (26 Views)
Introduction: In fact, individuals with diabetes mellitus (DM) are highly susceptible to developing urinary tract infections (UTIs). This study aimed to evaluate the etiologic agents of UTIs and their patterns of antimicrobial resistance among diabetic patients with UTIs in Ilam, western Iran.
Materials & Methods: A cross-sectional study was conducted from June 2020 to December 2023 in Ilam, in western Iran. A total of 3,362 patients with DM and UTI were evaluated for common uropathogens. Bacterial identification was performed using colony morphology, Gram staining, and standard biochemical tests. The antibiotic susceptibility pattern was determined using the Kirby-Bauer disk diffusion method on Muller-Hinton agar. Data analysis was performed using SPSS software version 16.0. Fisher's exact test and Pearson's chi-square test were used to assess the association between the variables (p-value <0.05 as significant).
Results:  Among the diabetic samples, 0.8% (27/3,362) were positive for uropathogens, with a higher prevalence in females (77.8%) than in males (22.2%) (p-value = 0.03). All positive cases were older than 44 years (p-value = 0.02). Gram-negative bacteria (GNB) were more common (70.3%) than gram-positive bacteria (GPB) (29.7%) (p-value = 0.001). Escherichia coli was the predominant pathogen (63%), followed by coagulase-negative staphylococci (25.9%), Citrobacter spp. (3.7%), Klebsiella spp. (3.7%), and coagulase-positive staphylococci (3.7%). Cefazolin and cephalexin showed the highest efficacy against GNB (both 10.5% resistance), whereas norfloxacin (63.2%), ampicillin (57.9%), and nalidixic acid (52.6%) exhibited higher resistance rates. Among GPB, co-trimoxazole, gentamycin, cefazolin, and amoxicillin/clavulanic acid were more effective (100% sensitive), whereas oxacillin (37.5%) showed poor efficacy.
Conclusion:  This study highlights the prevalence and resistance patterns of uropathogens in diabetic patients with UTIs, emphasizing the need for targeted antibiotic therapy and continuous monitoring.


 
Full-Text [PDF 1617 kb]   (17 Downloads)    
Type of Study: Research | Subject: Clinical Biochemistry
Received: 2024/02/3 | Accepted: 2025/03/10 | Published: 2025/07/13

References
1. References
2. Sewify M, Nair S, Warsame S, Murad M, Alhubail A, Behbehani K, et al. Prevalence of urinary tract infection and antimicrobial susceptibility among diabetic patients with controlled and uncontrolled glycemia in Kuwait. J Diabetes Res. 2016;2016.
3. Addis T, Mekonnen Y, Ayenew Z, Fentaw S, Biazin H. Bacterial uropathogens and burden of antimicrobial resistance pattern in urine specimens referred to Ethiopian Public Health Institute. PLoS One. 2021;16(11):e0259602. doi: [DOI:10.1371/journal.pone.0259602]
4. Ballén V, Gabasa Y, Ratia C, Ortega R, Tejero M, Soto S. Antibiotic Resistance and Virulence Profiles of Klebsiella pneumoniae Strains Isolated From Different Clinical Sources. Front Cell Infect Microbiol. 2021;11:738223. doi: [DOI:10.3389/fcimb.2021.738223]
5. Huang L, Huang C, Yan Y, Sun L, Li H. Urinary Tract Infection Etiological Profiles and Antibiotic Resistance Patterns Varied Among Different Age Categories: A Retrospective Study From a Tertiary General Hospital During a 12-Year Period. Front Microbiol. 2021;12:813145. doi: [DOI:10.3389/fmicb.2021.813145]
6. Majumder MMI, Mahadi AR, Ahmed T, Ahmed M, Uddin MN, Alam MZ. Antibiotic resistance pattern of microorganisms causing urinary tract infection: a 10-year comparative analysis in a tertiary care hospital of Bangladesh. Antimicrob Resist Infect Control. 2022;11(1):156. doi: [DOI:10.1186/s13756-022-01172-4]
7. Zubair KU, Shah AH, Fawwad A, Sabir R, Butt A. Frequency of urinary tract infection and antibiotic sensitivity of uropathogens in patients with diabetes. Pak J Med Sci. 2019;35(6):1664-8.
8. Ramana B, Chaudhury A. Prevalence of uropathogens in diabetic patients and their resistance pattern at a tertiary care centre in south India. Int J Biol Med Res. 2012;3(1):1433-5.
9. Cheng K, Guo Q, Yang W, Wang Y, Sun Z, Wu H. Mapping knowledge landscapes and emerging trends of the links between bone metabolism and diabetes mellitus: a bibliometric analysis from 2000 to 2021. Front Public Health. 2022;10:918483. doi: [DOI:10.3389/fpubh.2022.918483]
10. Paudel S, John PP, Poorbaghi SL, Randis TM, Kulkarni R. Systematic review of literature examining bacterial urinary tract infections in diabetes. J Diabetes Res. 2022;2022(1):3588297. doi: [DOI:10.1155/2022/3588297]
11. Chiță T, Licker M, Sima A, Vlad A, Timar B, Sabo P, et al. Prevalence of urinary tract infections in diabetic patients. Rom J Diabetes Nutr Metab Dis. 2013;20(2):99-105. doi: [DOI:10.2478/rjdnmd-2013-0012]
12. Bonadio M, Costarelli S, Morelli G, Tartaglia T. The influence of diabetes mellitus on the spectrum of uropathogens and the antimicrobial resistance in elderly adult patients with urinary tract infection. BMC Infect Dis. 2006;6:54. doi: [DOI:10.1186/1471-2334-6-54]
13. Murray BO, Flores C, Williams C, Flusberg DA, Marr EE, Kwiatkowska KM, et al. Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems. Front Cell Infect Microbiol. 2021;11:691210. doi: [DOI:10.3389/fcimb.2021.691210]
14. İlhanlı N, Park SY, Kim J, Ryu JA, Yardımcı A, Yoon D. Prediction of Antibiotic Resistance in Patients With a Urinary Tract Infection: Algorithm Development and Validation. JMIR Med Inform. 2024;12:e51326. doi: [DOI:10.2196/51326]
15. Woldemariam HK, Geleta DA, Tulu KD, Aber NA, Legese MH, Fenta GM, et al. Common uropathogens and their antibiotic susceptibility pattern among diabetic patients. BMC Infect Dis. 2019;19:1-10. doi: [DOI:10.1186/s12879-019-4503-0]
16. Esposito S, Biasucci G, Pasini A, Predieri B, Vergine G, Crisafi A, et al. Antibiotic resistance in paediatric febrile urinary tract infections. J Glob Antimicrob Resist. 2022;29:499-506. doi: [DOI:10.1016/j.jgar.2022.07.002]
17. Jeon JY, Ko S-H, Kwon H-S, Kim NH, Kim JH, Kim CS, et al. Prevalence of diabetes and prediabetes according to fasting plasma glucose and HbA1c. Diabetes Metab J. 2013;37(5):349. doi: [DOI:10.4093/dmj.2013.37.5.349]
18. Elgormus Y, Okuyan O, Dumur S, Sayili U, Uzun H. Evaluation of new generation systemic immune-inflammation markers to predict urine culture growth in urinary tract infection in children. Front Pediatr. 2023;11. doi: [DOI:10.3389/fped.2023.1201368]
19. Yadav K, Prakash S. Antimicrobial resistance pattern of uropathogens causing urinary tract infection (UTI) among diabetics. Biomed Res Int. 2016;1:7-15.
20. Xu R, Deebel N, Casals R, Dutta R, Mirzazadeh M. A New Gold Rush: A Review of Current and Developing Diagnostic Tools for Urinary Tract Infections. Diagnostics (Basel, Switzerland). 2021;11(3).
21. Bukhari SZ, Ahmed S, Zia N. Antimicrobial susceptibility pattern of Staphylococcus aureus on clinical isolates and efficacy of laboratory tests to diagnose MRSA: a multi-centre study. J Ayub Med Coll Abbottabad. 2011;23(1):139-42.
22. Hegstad K, Giske CG, Haldorsen B, Matuschek E, Schønning K, Leegaard TM, et al. Performance of the EUCAST disk diffusion method, the CLSI agar screen method, and the Vitek 2 automated antimicrobial susceptibility testing system for detection of clinical isolates of enterococci with low-and medium-level VanB-type vancomycin resistance: a multicenter study. J Clin Microbiol. 2014;52(5):1582-9. doi: [DOI:10.1128/JCM.03052-13]
23. Alemu M, Belete MA, Gebreselassie S, Belay A, Gebretsadik D. Bacterial profiles and their associated factors of urinary tract infection and detection of extended spectrum beta-lactamase producing gram-negative uropathogens among patients with diabetes mellitus at Dessie Referral Hospital, Northeastern Ethiopia. Diabetes Metab Syndr Obes. 2020:2935-48. doi: [DOI:10.2147/DMSO.S283075]
24. Yenehun Worku G, Belete Alamneh Y, Erku Abegaz W. Prevalence of bacterial urinary tract infection and antimicrobial susceptibility patterns among diabetes mellitus patients attending Zewditu memorial hospital, Addis Ababa, Ethiopia. Infect Drug Resist. 2021:1441-54. doi: [DOI:10.2147/IDR.S319045]
25. Al-Rubeaan KA, Moharram O, Al-Naqeb D, Hassan A, Rafiullah M. Prevalence of urinary tract infection and risk factors among Saudi patients with diabetes. World J Urol. 2013;31:573-8. doi: [DOI:10.1007/s00345-012-0933-7]
26. Chao C-T, Lee S-Y, Wang J, Chien K-L, Huang J-W. Frailty increases the risk for developing urinary tract infection among 79,887 patients with diabetic mellitus and chronic kidney disease. BMC Geriatr. 2021;21(1):349. doi: [DOI:10.1186/s12877-021-02224-z]
27. Yismaw G, Asrat D, Woldeamanuel Y, Unakal CG. Urinary tract infection: bacterial etiologies, drug resistance profile and associated risk factors in diabetic patients attending Gondar University Hospital, Gondar, Ethiopia. Eur J Exp Bio. 2012;2(4):889-98.
28. Tachkov K, Mitov K, Koleva Y, Mitkova Z, Kamusheva M, Dimitrova M, et al. Life expectancy and survival analysis of patients with diabetes compared to the non diabetic population in Bulgaria. PLoS One. 2020;15(5):e0232815. doi: [DOI:10.1371/journal.pone.0232815]
29. Tegegne KD, Wagaw GB, Gebeyehu NA, Yirdaw LT, Shewangashaw NE, Kassaw MW. Prevalence of urinary tract infections and risk factors among diabetic patients in Ethiopia, a systematic review and meta-analysis. PLoS One. 2023;18(1):e0278028. doi: [DOI:10.1371/journal.pone.0278028]
30. Worku S, Derbie A, Sinishaw MA, Adem Y, Biadglegne F. Prevalence of bacteriuria and antimicrobial susceptibility patterns among diabetic and nondiabetic patients attending at Debre Tabor Hospital, Northwest Ethiopia. Int J Microbiol. 2017;2017.
31. Arbianti N, Prihatiningsih S, Indriani DW, Indriati DW. A retrospective cross-sectional study of urinary tract infections and prevalence of antibiotic resistant pathogens in patients with diabetes mellitus from a public hospital in Surabaya, Indonesia. Germs. 2020;10(3):157. doi: [DOI:10.11599/germs.2020.12504]
32. Janifer J, Geethalakshmi S, Satyavani K, Viswanathan V. Prevalence of lower urinary tract infection in South Indian type 2 diabetic subjects. Indian J Nephrol. 2009;19(3):107-11.
33. Nayaju T, Upreti MK, Ghimire A, Shrestha B, Maharjan B, Joshi RD, et al. Higher Prevalence of Extended Spectrum β-Lactamase Producing Uropathogenic Escherichia coli Among Patients with Diabetes from a Tertiary Care Hospital of Kathmandu, Nepal. Am J Trop Med Hyg. 2021;105(5):1347-55. doi: [DOI:10.4269/ajtmh.21-0498]
34. Mehrabi M, Salehi B, Rassi H, Dehghan A. Evaluating the antibiotic resistance and frequency of adhesion markers among Escherichia coli isolated from type 2 diabetes patients with urinary tract infection and its association with common polymorphism of mannose-binding lectin gene. New Microbes New Infect. 2020;38:100827. doi: [DOI:10.1016/j.nmni.2020.100827]
35. Yao R, Mao X, Xu Y, Qiu X, Zhou L, Wang Y, et al. Polysaccharides from Vaccaria segetalis seeds reduce urinary tract infections by inhibiting the adhesion and invasion abilities of uropathogenic Escherichia coli. Front Cell Infect Microbiol. 2022;12:1004751. doi: [DOI:10.3389/fcimb.2022.1004751]
36. Nteziyaremye J, Iramiot SJ, Nekaka R, Musaba MW, Wandabwa J, Kisegerwa E, et al. Asymptomatic bacteriuria among pregnant women attending antenatal care at Mbale Hospital, Eastern Uganda. PLoS One. 2020;15(3):e0230523. doi: [DOI:10.1371/journal.pone.0230523]
37. Brepoels P, De Wit G, Lories B, Belpaire TE, Steenackers HP. Selective pressures for public antibiotic resistance. Crit Rev Microbiol. 2024:1-10. doi: [DOI:10.1080/1040841X.2024.[incomplete]]
38. Ahmed AE, Abdelkarim S, Zenida M, Baiti MAH, Alhazmi AAY, Alfaifi BAH, et al., editors. Prevalence and associated risk factors of urinary tract infection among diabetic patients: a cross-sectional study. Healthcare. 2023;11(6):861. doi: [DOI:10.3390/healthcare11060861]
39. Assefa M. Multi-drug resistant gram-negative bacterial pneumonia: etiology, risk factors, and drug resistance patterns. Pneumonia. 2022;14(1):4. doi: [DOI:10.1186/s41479-022-00097-6]
40. Nucleo E, Caltagirone M, Marchetti VM, D’Angelo R, Fogato E, Confalonieri M, et al. Colonization of long-term care facility residents in three Italian Provinces by multidrug-resistant bacteria. Antimicrob Resist Infect Control. 2018;7:1-11. doi: [DOI:10.1186/s13756-018-0334-4]
41. Hasanpour AH, Sepidarkish M, Mollalo A, Ardekani A, Almukhtar M, Mechaal A, et al. The global prevalence of methicillin-resistant Staphylococcus aureus colonization in residents of elderly care centers: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2023;12(1):4. doi: [DOI:10.1186/s13756-023-01226-2.]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.