1. Kocak Eker H, Balasar O. Distinct Distribution of HBB Variants in Two Cohorts of Beta Thalassemia Patients, and a Novel Variant from Turkey. Mol syndromol. 2024;15(5):362-70. https://doi.org/ 10.1159/000538300. [
DOI:10.1159/000538300.]
2. Elendu C, Amaechi DC, Alakwe-Ojimba CE, Elendu TC, Elendu RC, Ayabazu CP, et al. Understanding Sickle cell disease: Causes, symptoms, and treatment options. Medicine. 2023;102(38):e35237. https://doi.org/ 10.1097/md.0000000000035237. [
DOI:10.1097/md.0000000000035237.]
3. Wiles MV, Qin W, Cheng AW, Wang H. CRISPR-Cas9-mediated genome editing and guide RNA design. Mamm genome : official journal of the International Mammalian Genome Society. 2015;26(9-10):501-10. [
DOI:10.1007/s00335-015-9565-z.]
4. Pougnet R, Derbez B, Troadec MB. Mapping the 'Ethical' Controversy of Human Heritable Genome Editing: a Multidisciplinary Approach. Asian bioeth Rev. 2023;15(2):189-204. [
DOI:10.1007/s41649-022-00234-1.]
5. Demirci S, Leonard A, Essawi K, Tisdale JF. CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Mol Ther Methods Clin Dev. 2021;23:276-85. [
DOI:10.1016/j.omtm.2021.09.010.]
6. Young JL, Dean DA. Electroporation-mediated gene delivery. Adv genet. 2015;89:49-88. [
DOI:10.1016/bs.adgen.2014.10.003.]
7. Liao H, Wu J, VanDusen NJ, Li Y, Zheng Y. CRISPR-Cas9-mediated homology-directed repair for precise gene editing. Mol Ther Nucleic acids. 2024;35(4):102344. [
DOI:10.1016/j.omtn.2024.102344.]
8. Humbert O, Radtke S, Samuelson C, Carrillo RR, Perez AM, Reddy SS, et al. Therapeutically relevant engraftment of a CRISPR-Cas9-edited HSC-enriched population with HbF reactivation in nonhuman primates. Sci transl med. 2019;11(503). [
DOI:10.1126/scitranslmed.aaw3768.]
9. Xu Y, Le H, Wu Q, Wang N, Gong C. Advancements in CRISPR/Cas systems for disease treatment. Acta pharm Sin B. 2025;15(6):2818-44. [
DOI:10.1016/j.apsb.2025.05.007.]
10. Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J bacteriol. 2018;200(7). [
DOI:10.1128/jb.00580-17.]
11. Saeed K, Ayub F, Durrani MA, Mujahid M. CRISPR Cas systems: From Bacterial Defense Mechanisms to Revolutionary Tools Reshaping Genetic Research and Translation Therapeutics. The Microbe. 2025:100344. [
DOI:10.1016/j.microb.2025.100344.]
12. Mojica FJ, Ferrer C, Juez G, Rodríguez-Valera F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol microbiol. 1995;17(1):85-93. [
DOI:10.1111/j.1365-2958.1995.mmi_17010085.x.]
13. Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, et al. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms. 2024;12(1). [
DOI:10.3390/microorganisms12010118.]
14. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Nature Rev Microbiol. 2011;9(6):467-77. [
DOI:10.1038/nrmicro2577.]
15. van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol. 2014;12(7):479-92. [
DOI:10.1038/nrmicro3279.]
16. Vink JN, Baijens JH, Brouns SJ. Comprehensive PAM prediction for CRISPR-Cas systems reveals evidence for spacer sharing, preferred strand targeting and conserved links with CRISPR repeats. BioRxiv. 2021:2021.05. 04.442622. [
DOI:10.1101/2021.05.04.442622.]
17. Barrangou R, Marraffini LA. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol cell. 2014;54(2):234-44. [
DOI:10.1016/j.molcel.2014.03.011.]
18. Loureiro A, da Silva GJ. CRISPR-Cas: Converting A Bacterial Defence Mechanism into A State-of-the-Art Genetic Manipulation Tool. Antibiotics (Basel, Switzerland). 2019;8(1). [
DOI:10.3390/antibiotics8010018.]
19. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262-78. [
DOI:10.1016/j.cell.2014.05.010.]
20. Finger-Bou M, Orsi E, van der Oost J, Staals RHJ. CRISPR with a Happy Ending: Non-Templated DNA Repair for Prokaryotic Genome Engineering. Biotechnol j. 2020;15(7):e1900404. [
DOI:10.1002/biot.201900404.]
21. Gostimskaya I. CRISPR-Cas9: A History of Its Discovery and Ethical Considerations of Its Use in Genome Editing. Biochem. 2022;87(8):777-88. [
DOI:10.1134/s0006297922080090.]
22. Wang JY, Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science. 2023;379(6629):eadd8643. [
DOI:10.1126/science.add8643.]
23. Uyhazi KE, Bennett J. A CRISPR view of the 2020 Nobel Prize in Chemistry. J clinic investig. 2021;131(1). [
DOI:10.1172/JCI145214.]
24. Islam MT, Bhowmik PK, Molla KA. CRISPR-Cas methods: Springer; 2020.
25. Li JB, Levanon EY, Yoon J-K, Aach J, Xie B, LeProust E, et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science. 2009;324(5931):1210-3. [
DOI:10.1126/science.1170995.]
26. Ali F, Hameed A, Rehman A, Sarfraz S, Rajput NA, Atiq M. CRISPR System Discovery, History, and Future Perspective. OMICs‐based Techniques for Global Food Security. 2024:159-70. [
DOI:10.1002/9781394209156.ch8.]
27. Dimitriu T, Szczelkun MD, Westra ER. Evolutionary ecology and interplay of prokaryotic innate and adaptive immune systems. Curre Biol. 2020;30(19):R1189-R202. [
DOI:10.1016/j.cub.2020.08.028.]
28. Thakur A, Mikkelsen H, Jungersen G. Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J immuno res. 2019;2019:1356540. [
DOI:10.1155/2019/1356540.]
29. Boehm T, Swann JB. Origin and evolution of adaptive immunity. Annu Rev Anim Biosci. 2014;2(1):259-83. [
DOI:10.1146/annurev-animal-022513-114201.]
30. Killelea T, Bolt EL. CRISPR-Cas adaptive immunity and the three Rs. Bioscience reports. 2017;37(4). [
DOI:10.1042/bsr20160297.]
31. Zhang X, Garrett S, Graveley BR, Terns MP. Unique properties of spacer acquisition by the type III-A CRISPR-Cas system. Nucleic acids research. 2022;50(3):1562-82. [
DOI:10.1093/nar/gkab1193.]
32. Schelling MA, Nguyen GT, Sashital DG. CRISPR-Cas effector specificity and cleavage site determine phage escape outcomes. PLoS biology. 2023;21(4):e3002065. [
DOI:10.1371/journal.pbio.3002065.]
33. Liu TY, Doudna JA. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation.The J bio chem. 2020;295(42):14473-87. [
DOI:10.1074/jbc.REV120.007034.]
34. Modell JW, Jiang W, Marraffini LA. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature. 2017;544(7648):101-4. [
DOI:10.1038/nature21719.]
35. Nussenzweig PM, McGinn J, Marraffini LA. Cas9 Cleavage of Viral Genomes Primes the Acquisition of New Immunological Memories. Cell host & microbe. 2019;26(4):515-26.e6. [
DOI:10.1016/j.chom.2019.09.002.]
36. Asmamaw M, Zawdie B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics : targets & therapy. 2021;15:353-61. [
DOI:10.2147/btt.s326422.]
37. Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. CSBJ. 2020;18:2401-15. [
DOI:10.1016/j.csbj.2020.08.031.]
38. Zakrzewska M, Burmistrz M. Mechanisms regulating the CRISPR-Cas systems. Front microbiol. 2023;14:1060337. [
DOI:10.3389/fmicb.2023.1060337.]
39. Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr opin microbiol. 2017;37:67-78. [
DOI:10.1016/j.mib.2017.05.008.]
40. Nuñez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat struct mol biol. 2014;21(6):528-34. [
DOI:10.1038/nsmb.2820.]
41. Ratner HK, Sampson TR, Weiss DS. Overview of CRISPR–Cas9 biology. Cold Spring Harbor Protocols. 2016;2016(12):pdb. top088849. [
DOI:10.1101/pdb.top088849.]
42. Anders C, Niewoehner O, Duerst A, Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. 2014;513(7519):569-73. [
DOI:10.1038/nature13579.]
43. Koonin EV, Gootenberg JS, Abudayyeh OO. Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry. 2023;62(24):3465-87. [
DOI:10.1021/acs.biochem.3c00159.]
44. Ghorbani A, Hadifar S, Salari R, Izadpanah K, Burmistrz M, Afsharifar A, et al. A short overview of CRISPR-Cas technology and its application in viral disease control. Transgenic research. 2021;30(3):221-38. [
DOI:10.1007/s11248-021-00247-w.]
45. Saber Sichani A, Ranjbar M, Baneshi M, Torabi Zadeh F, Fallahi J. A Review on Advanced CRISPR-Based Genome-Editing Tools: Base Editing and Prime Editing. Mol biotech. 2023;65(6):849-60. [
DOI:10.1007/s12033-022-00639-1.]
46. Kantor A, McClements ME, MacLaren RE. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. Int j mol sci. 2020;21(17). [
DOI:10.3390/ijms21176240.]
47. Xue C, Greene EC. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing. Trends in genetics : TIG. 2021;37(7):639-56. [
DOI:10.1016/j.tig.2021.02.008.]
48. Stinson BM, Loparo JJ. Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway. Annl rev biochem. 2021;90:137-64. 10.1146/annurev-biochem-080320-110356.
49. Xu Y, Le H, Wu Q, Wang N, Gong C. Advancements in CRISPR/Cas systems for disease treatment. Acta Pharmaceutica Sinica B. 2025. [
DOI:10.1016/j.csbj.2020.08.031.]
50. Hossain MA. CRISPR-Cas9: A fascinating journey from bacterial immune system to human gene editing. Prog mol biol transl sci. 2021;178:63-83. [
DOI:10.1016/bs.pmbts.2021.01.001.]
51. Ingle RG, G ME, Ansari MN, Makhijani S. Unlocking the potential: advancements and applications of gene therapy in severe disorders. Ann med. 2025;57(1):2516697. [
DOI:10.1080/07853890.2025.2516697.]
52. Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, et al. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal transduct. 2024;9(1):149. [
DOI:10.1038/s41392-024-01848-7.]
53. Heng HH. The genomic landscape of cancers. Ecology and evolution of cancer: Elsevier; 2017. p. 69-86.
54. Kolanu ND. CRISPR-Cas9 Gene Editing: Curing Genetic Diseases by Inherited Epigenetic Modifications. Global medical genetics. 2024;11(1):113-22. [
DOI:10.1055/s-0044-1785234.]
55. Feng X, Li Z, Liu Y, Chen D, Zhou Z. CRISPR/Cas9 technology for advancements in cancer immunotherapy: from uncovering regulatory mechanisms to therapeutic applications. Exp hematol oncol. 2024;13(1):102. [
DOI:10.1186/s40164-024-00570-y.]
56. Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, et al. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol cancer. 2024;23(1):9. [
DOI:10.1186/s12943-023-01925-5.]
57. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer j clinic. 2024;74(3):229-63. [
DOI:10.3322/caac.21834.]
58. Liu B, Zhou H, Tan L, Siu KTH, Guan X-Y. Exploring treatment options in cancer: tumor treatment strategies. Signal transduct. 2024;9(1):175. [
DOI:10.1038/s41392-024-01856-7.]
59. Saraswat P, Chaturvedi A, Ranjan R. Zinc finger nuclease (ZFNs) and transcription activator-like effector nucleases (TALENs) based genome editing in enhancement of anticancer activity of plants. Plant-derived anticancer drugs in the OMICS era: Apple Academic Press; 2023. p. 281-93.
60. Aljabali AA, El-Tanani M, Tambuwala MM. Principles of CRISPR-Cas9 technology: Advancements in genome editing and emerging trends in drug delivery. J Drug Deliv Sci Technol. 2024;92:105338. [
DOI:10.1016/j.jddst.2024.105338.]
61. Kirschner J, Cathomen T. Gene therapy for monogenic inherited disorders: opportunities and challenges. Deutsch Ärztebl Int. 2020;117(51-52):878. [
DOI:10.3238/arztebl.2020.0878.]
62. Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Molecular therapy : the journal of the American Society of Gene Therapy. 2021;29(2):571-86. [
DOI:10.1016/j.ymthe.2020.09.028.]
63. Tariq H, Khurshid F, Khan MH, Dilshad A, Zain A, Rasool W, et al. CRISPR/Cas9 in the treatment of sickle cell disease (SCD) and its comparison with traditional treatment approaches: a review. Ann med surg (2012). 2024;86(10):5938-46. [
DOI:10.1097/ms9.0000000000002478.]
64. Harteveld CL, Achour A, Arkesteijn SJG, Ter Huurne J, Verschuren M, Bhagwandien-Bisoen S, et al. The hemoglobinopathies, molecular disease mechanisms and diagnostics. Int j Lab Hematol. 2022;44 Suppl 1(Suppl 1):28-36. [
DOI:10.1111/ijlh.13885.]
65. Liras A, Segovia C, Gabán AS. Advanced therapies for the treatment of hemophilia: future perspectives. Orphanet j rare Dis. 2012;7(1):97. [
DOI:10.1186/1750-1172-7-97.]
66. Haque US, Yokota T. Gene Editing for Duchenne Muscular Dystrophy: From Experimental Models to Emerging Therapies. Degener Neurol Neuromuscul Dis. 2025:17-40. [
DOI:10.2147/DNND.S495536.]
67. Shin JW, Hong EP, Park SS, Choi DE, Seong IS, Whittaker MN, et al. Allele-specific silencing of the gain-of-function mutation in Huntington's disease using CRISPR/Cas9. JCI insight. 2022;7(19). [
DOI:10.1172/jci.insight.141042.]
68. Martinez M, Harding CO, Schwank G, Thöny B. State-of-the-art 2023 on gene therapy for phenylketonuria. JIMD. 2024;47(1):80-92. [
DOI:10.1002/jimd.12651.]
69. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. NEJM. 2021;385(6):493-502. [
DOI:10.1056/NEJMoa2107454.]
70. Mazurov D, Ramadan L, Kruglova N. Packaging and Uncoating of CRISPR/Cas Ribonucleoproteins for Efficient Gene Editing with Viral and Non-Viral Extracellular Nanoparticles. Viruses. 2023;15(3). [
DOI:10.3390/v15030690.]
71. Mirón-Barroso S, Domènech EB, Trigueros S. Nanotechnology-Based Strategies to Overcome Current Barriers in Gene Delivery. Int j Mol Sci. 2021;22(16). [
DOI:10.3390/ijms22168537.]
72. Liu D, Zhu M, Zhang Y, Diao Y. Crossing the blood-brain barrier with AAV vectors. Metab Brain dis. 2021;36(1):45-52. [
DOI:10.1007/s11011-020-00630-2.]
73. Chew WL. Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley interdisciplinary reviews Systems biology medicine. 2018;10(1). [
DOI:10.1002/wsbm.1408.]
74. Ewaisha R, Anderson KS. Immunogenicity of CRISPR therapeutics-Critical considerations for clinical translation. Front Bioengineer Biotech. 2023;11:1138596. [
DOI:10.3389/fbioe.2023.1138596.]
75. Luther DC, Lee YW, Nagaraj H, Scaletti F, Rotello VM. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges. Expert opin Drug Deliv. 2018;15(9):905-13. [
DOI:10.1080/17425247.2018.1517746.]
76. Wilbie D, Walther J, Mastrobattista E. Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing. Acc chem Res. 2019;52(6):1555-64. [
DOI:10.1021/acs.accounts.9b00106.]
77. Raposo VL. The First Chinese Edited Babies: A Leap of Faith in Science. JBRA assisted reproduc. 2019;23(3):197-9. [
DOI:10.5935/1518-0557.20190042.]
78. Rubeis G, Steger F. Risks and benefits of human germline genome editing: An ethical analysis. ABR. 2018;10(2):133-41. [
DOI:10.1007/s41649-018-0056-x.]
79. Zhai X. Chinese academic community speaks out on He Jiankui again: Consensus statement on the challenges and responses of science and technology ethics governance. Health care sci. 2023;2(2):79-81. [
DOI:10.1002/hcs2.41.]
80. Brokowski C, Adli M. CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. J mol biol. 2019;431(1):88-101. [
DOI:10.1016/j.jmb.2018.05.044.]
81. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. [
DOI:10.1126/science.1258096.]
82. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature biotech. 2013;31(9):822-6. [
DOI:10.1038/nbt.2623.]