[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
About Journal::
Editorial Board::
Articles Archive::
Indexing Databases::
To Authors::
To Reviewers::
Submit Your Article::
Policies and Publication Ethics::
Archiving Policy::
Site Facilities::
Contact Us::
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Registered in



:: Volume 10, Issue 3 (6-2023) ::
2023, 10(3): 62-71 Back to browse issues page
In silico drug-likeness /ADMET prediction and molecular docking studies on key chemical constituents of Crataegus Azarolus L. for preventing cardiovascular disease
Azizeh Asadzadeh , Azam Moshfegh , Fatemeh Shams Moattar
Department of Biology, Faculty of Science, Nour Danesh Institute of higher education, Meymeh, Isfahan, Iran , az.asadzadeh@yahoo.com
Abstract:   (259 Views)
Introduction: Elevated plasma LDL cholesterol levels play a crucial role in cardiovascular disease development. Squalene synthase (SQS), a regulatory enzyme in cholesterol biosynthesis, is a target for controlling hypercholesterolemia. Traditional medicine recommends Crataegus Azarolus L. for heart-related conditions, including high blood pressure, irregular heartbeat, and arteriosclerosis. Our research focuses on drug-likeness/ADMET prediction and molecular docking studies of C. azarolus constituents for cardiovascular disease prevention.
Material & Methods: Chemical constituents of C. azarolus L. were selected based on the squalene synthase co-crystal molecule (3ASX). After energy optimization with Hyperchem, Auto Dock Vina facilitated ligand docking into the SQS active site, providing data on binding methods and compound binding energy. SwissADME and SCF Bio IITD webserver were used for in silico drug-likeness/ADME predictions.
Results: Auto Dock Vina results and pharmacokinetic (PK) studies revealed that 2,4-Di-tert-butylphenol exhibited the highest alignment with the synthetic co-crystal molecule concerning position, binding energy, and pharmacokinetic properties among herbal compounds.
Conclusion: Overall, 2,4-Di-tert-butylphenol demonstrated significant affinity for squalene synthase, suggesting its potential to occupy the enzyme's active site. This compound holds promise as a viable substitute for the synthetic co-crystal molecule, pending laboratory confirmation.
Keywords: Squalene synthase, Drug-likeness, ADMET prediction, C. azarolus, Docking study
Full-Text [PDF 240 kb]   (78 Downloads)    
Type of Study: Research | Subject: Cellular and molecular biology
Received: 2023/08/9 | Accepted: 2023/10/7 | Published: 2023/06/25
1. Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 2019;234(10):16812-23. doi: 10.1002/jcp.28350.
2. Ortega FB, Lavie CJ, Blair SN. Obesity, Cardiovascular Disease. Circ Res. 2016 27;118(11):1752-70. doi: 10.1161/CIRCRESAHA.115.306883.
3. Van der Kooy K, van Hout H, Marwijk H, Marten H, Stehouwer C, Beekman A. Depression and the risk for cardiovascular diseases: systematic review and meta analysis. Int J Geriatr Psychiatry. 2007 Jul;22(7):613-26. doi: 10.1002/gps.1723.
4. Huxley R, Lewington S, Clarke R. Cholesterol, coronary heart disease and stroke: a review of published evidence from observational studies and randomized controlled trials. Semin Vasc Med. 2002;2(3):315-323. doi:10.1055/s-2002-35402.
5. Goldman RE, Parker DR, Eaton CB, Borkan JM, Gramling R, Cover RT, et al. Patients' perceptions of cholesterol, cardiovascular disease risk, and risk communication strategies. Ann Fam Med. 2006;4(3):205-12. doi: 10.1370/afm.534.
6. Do R, Kiss RS, Gaudet D, Engert JC. Squalene synthase: a critical enzyme in the cholesterol biosynthesis pathway. Clin Genet. 2009;75(1):19-29. doi:10.1111/j.1399-0004.2008.01099.x
7. Tansey TR, Shechter I. Structure and regulation of mammalian squalene synthase. Biochim Biophys Acta. 2000;1529(1-3):49-62. doi:10.1016/s1388-1981(00)00137-2.
8. Tavridou A, Manolopoulos VG. EP2300 compounds: focusing on the antiatherosclerotic properties of squalene synthase inhibitors. Curr Pharm Des. 2009;15(27):3167-3178. doi:10.2174/138161209789057968.
9. Lee M, Shin H, Park M, Kim A, Cha S, Lee H. Systems pharmacology approaches in herbal medicine research: a brief review. BMB Rep. 2022;55(9):417-428. doi:10.5483/BMBRep.2022.55.9.102.
10. Falzon CC, Balabanova A. Phytotherapy: An Introduction to Herbal Medicine. Prim Care. 2017;44(2):217-227. doi:10.1016/j.pop.2017.02.001.
11. Yahyaoui A, Arfaoui MO, Rigane G, Hkir A, Amari K, Ben Salem R, et al. Investigation on the chemical composition and antioxidant capacity of extracts from Crataegus azarolus L.: effect of growing location of an important Tunisian medicinal plant. Chem Afr.2019;2:361-5. doi: https://doi.org/10.1007/s42250-019-00054-1.
12. Khiari S, Boussaid M, Messaoud C. Genetic diversity and population structure in natural populations of Tunisian Azarole (Crataegus azarolus L. var. aronia L.) assessed by microsatellite markers. Biochem Syst Ecol. 2015;59:264-70. doi: 10.1016/j.bse.2015.01.025.
13. Asadzadeh A, Abbasi M, Pournuroz Nodeh Z, Mahmoudi F. Studying the inhibitory effects of some chalcone derivatives on Streptococcus mutans sortase a to prevent dental caries: An in silico approach. Avicenna J Clin Microbiol Infect. 2023; 10(1):13-19. doi:10.34172/ajcmi.2023.3433.
14. Rahnama Falavarjani S, Asadzadeh A, Heidarian Naini F. Bioinformatic studies of the effect of thymus vulgaris on alpha-glucosidase enzyme inhibition for treating diabetes. ijdld. 2019;18(1):19-28.
15. Asadzadeh A, Fassihi A, Yaghmaei P, Pourfarzam M. In silico approach for designing potent inhibitors against tyrosinase. Biosci Biotechnol Res Asia. 2015;12(2):181-7. doi: 10.13005/bbra/2188.
16. Naderi Kotaki M, Asadzadeh A, Heidaryan F. study the effect of thymus vulgaris in inhibiting acetylcholinesterase enzyme in order to treat Alzheimer’s disease. JSUMS. 2020;27(5):594-602.
17. Kallassy H, Fayyad-Kazan M, Makki R, El-Makhour Y, Hamade E, Rammal H, et al. Chemical Composition, Antioxidant, Anti-Inflammatory, and Antiproliferative Activities of the Plant Lebanese Crataegus Azarolus L. Med Sci Monit Basic Res. 2017;23:270-284. doi:10.12659/msmbr.905066.
18. Bahri-Sahloul R, Ammar S, Grec S, Harzallah-Skhiri F. Chemical characterisation of Crataegus azarolus L. fruit from 14 genotypes found in Tunisia. J Hortic Sci Biotechnol. 2009;84(1):23-8. doi: 10.1080/14620316.2009.11512474.
19. Ichikawa M, Yokomizo A, Itoh M, Usui H, Shimizu H, Suzuki M, et al. Discovery of a new 2-aminobenzhydrol template for highly potent squalene synthase inhibitors. Bioorg Med Chem. 2011;19(6):1930-1949. doi:10.1016/j.bmc.2011.01.065.
20. Shams Moattar F, Asadzadeh A, Esnaashari F. Designing Multi‐Epitope Subunit Vaccine Candidate for Zika Virus Utilizing In silico Tools. Res Mol Med. 2022;10(1):9-18. doi:10.32598/rmm.10.1.1249.1.
21. Shojaei Barjouei M, Norouzi S, Bernoos P, Mokhtari K, Asadzadeh A. Comparison of the Inhibitory Activity of Bioactive Compounds of Salvia Officinalis with Antidiabetic Drugs, Voglibose and Miglitol, In Suppression of Alpha-Glucosidase Enzyme by In Silico Method. ijdld. 2022;22(3):145-54.
22. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461. doi:10.1002/jcc.21334.
23. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. doi:10.1038/srep42717.
24. Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337-341. doi:10.1016/j.ddtec.2004.11.007.
25. Briel M, Ferreira-Gonzalez I, You JJ, Karanicolas PJ, Akl EA, Wu P, et al. Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ. 2009;338:b92. doi:10.1136/bmj.b92.
26. Cannon B. Cardiovascular disease: Biochemistry to behaviour. Nature. 2013;493(7434):S2-S3. doi:10.1038/493S2a.
27. Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care. 2013;40(1):195-211. doi:10.1016/j.pop.2012.11.003.
28. Rashidi H, Tahmasebi W, Khalili M, Ahmadi R. Simultaneous effect of one-month crataegus supplementation and rehabilitation program on cardiac contractile strength, blood pressure, heart rate and functional capacity of patients with heart failure. J basic clin pathophysiol. 2020;8(2):28-36. doi: 10.22070/JBCP.2020.5629.1134.
29. Wang T, An Y, Zhao C, Han L, Boakye-Yiadom M, Wang W, et al. Regulation effects of Crataegus pinnatifida leaf on glucose and lipids metabolism. J Agric Food Chem. 2011;59(9):4987-94. doi: 10.1021/jf1049062.
30. Huo X, Lu F, Qiao L, Li G, Zhang Y. A Component Formula of Chinese Medicine for Hypercholesterolemia Based on Virtual Screening and Biology Network. Evid Based Complement Alternat Med. 2018;2018:1854972. doi: 10.1155/2018/1854972.
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadzadeh A, Moshfegh A, Shams Moattar F. In silico drug-likeness /ADMET prediction and molecular docking studies on key chemical constituents of Crataegus Azarolus L. for preventing cardiovascular disease. Journal of Basic Research in Medical Sciences 2023; 10 (3) :62-71
URL: http://jbrms.medilam.ac.ir/article-1-776-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 3 (6-2023) Back to browse issues page
مجله ی تحقیقات پایه در علوم پزشکی Journal of Basic Research in Medical Sciences
Persian site map - English site map - Created in 0.16 seconds with 41 queries by YEKTAWEB 4654