logo
Volume 12, Issue 3 (5-2025)                   jbrms 2025, 12(3): 52-63 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shokri B, Chanideh I, Salimi A, Akrami M R. Morphological Status of Cervical Vertebrae (C3-C7) in Patients in West of Iran. jbrms 2025; 12 (3) :52-63
URL: http://jbrms.medilam.ac.ir/article-1-795-en.html
Research expert at the Health Insurance Research Center of Kermanshah ProvinceResearch assistant of Taleghani Hospital Research Center , bita.shokri19921371@gmail.com
Abstract:   (40 Views)

Introduction: The cervical spine, endowed with significant mobility due to two specialized vertebrae connected to the skull, can suffer from unnatural positioning, leading to asymmetry and injuries. This study was conducted to examine the morphological status of cervical vertebrae (C3-C7) in a clinical population.
Materials & Methods: This cross-sectional study was conducted with 450 patients with neck trauma between December 2018 and August 2019 at Taleghani Hospital, a tertiary referral center in Kermanshah, Iran. Demographic data, including age, gender, height, and BMI, were collected. Morphological measurements were obtained from CT scans, complemented by MRI in selected cases. Parameters included vertebral body dimensions, foramina size, and facet lengths. Statistical analysis was performed using SPSS v22. Quantitative variables were assessed with t-tests and ANOVA. A significance level of P<0.05 was considered.
Results:  Significant differences were found in the dimensions of vertebrae C3–C7 among demographic subgroups (P<0.01). Vertebral body width, length, height, and foramina dimensions were generally larger in males, patients over 60 years old, individuals taller than 180 cm, and those with higher BMI values.
Conclusion:  The study concludes that the vertebral body dimensions at levels C3–C7 are significantly larger in males, individuals over 60 years of age, those taller than 180 cm, and those with higher BMI values.

 
Full-Text [PDF 1687 kb]   (10 Downloads)    
Type of Study: Research | Subject: Neurosurgery
Received: 2023/12/12 | Accepted: 2025/01/9 | Published: 2025/07/13

References
1. Hussain O, Kaushal M, Agarwal N, Kurpad S, Shabani S. The role of magnetic resonance imaging and computed tomography in spinal cord injury. Life (Basel). 2023;13(8):1223. doi: 10.3390/life13081223.
2. Waxenbaum JA, Reddy V, Williams C, Futterman B. Anatomy of the lumbar vertebrae: a comprehensive overview. Clin Anat. 2017;30(5):703-10. doi: 10.1002/ca.22963.
3. Masharawi Y, Mansour AM, Peled N, Weisman A. Comparative shape analysis of the cervical spine between individuals with cervicogenic headaches and asymptomatic controls. Sci Rep. 2021;11(1):19413. doi: 10.1038/s41598-021-97812-4.
4. Karaikovic EE, Daubs MD, Madsen RW, Gaines RW Jr. Morphologic characteristics of human cervical pedicles. Spine. 1997;22(5):493-500. doi: 10.1097/00007632-199703010-00008.
5. Galbusera F, Bassani T. The spine: a strong, stable, and flexible structure with biomimetic potential. Biomimetics. 2019;4(3):60. doi: 10.3390/biomimetics4030060.
6. Herzog RJ, Wiens JJ, Dillingham MF, Sontag MJ. Normal cervical spine morphometry and cervical spinal stenosis in asymptomatic professional football players: plain film radiography, multiplanar computed tomography, and magnetic resonance imaging. Spine. 1991;16(6S):S178–S86. doi: 10.1097/00007632-199106001-00016
7. Jung B, Black AC, Bhutta BS. Anatomy of the head and neck, including neck movements. In: StatPearls [Internet]. StatPearls Publishing; 2023. Available from: StatPearls.
8. Humphreys SC, Hodges SD, Patwardhan A, Eck JC, Covington LA, Sartori M. The natural history of the cervical foramen in symptomatic and asymptomatic individuals aged 20–60 years as measured by magnetic resonance imaging: a descriptive approach. Spine. 1998;23(20):2180-4. doi: 10.1097/00007632-199810150-00013.
9. Mesregah MK, Repajic M, Mgbam P, Fresquez Z, Wang JC, Buser Z. Trends and patterns of cervical degenerative disc disease: an analysis of magnetic resonance imaging of 1300 symptomatic patients. Eur Spine J. 2022;31(10):2675-83. doi: 10.1007/s00586-022-07102-w.
10. White A. Clinical biomechanics of the spine. Clin Biomech Spine. 1990. https://cir.nii.ac.jp/crid/1570291225216893568
11. White A. Clinical biomechanics of the spine. Clin Biomech Spine. 1990. https://cir.nii.ac.jp/crid/1570291225216893568
12. Penning L. Differences in anatomy, motion, development, and aging of the upper and lower cervical disk segments. Clin Biomech. 1988;3(1):37-47. doi: 10.1016/0268-0033(88)90009-7.
13. Segar AH, Baroncini A, Urban JP, Fairbank J, Judge A, McCall I. Obesity increases the odds of intervertebral disc herniation and spinal stenosis: an MRI study of 1634 low back pain patients. Eur Spine J. 2024;33(3):915-23. doi: 10.1007/s00586-023-07191-6.
14. Bahadorimonfared A, Soori H, Mehrabi Y, Delpisheh A, Esmaili A, Salehi M, et al. Trends of fatal road traffic injuries in Iran (2004–2011). PLoS One. 2013;8(5):e65198. doi: 10.1371/journal.pone.0065198.
15. Moradi-Lakeh M, Rasouli MR, Vaccaro AR, Saadat S, Zarei MR, Rahimi-Movaghar V. Burden of traumatic spine fractures in Tehran, Iran: a population-based study. BMC Public Health. 2011;11:1-7. doi: 10.1186/1471-2458-11-37.
16. Asadi P, Asadi K, Monsef-Kasmaei V, Zohrevandi B, Kazemnejad-Leili E, Kouchakinejad Eramsadati L, et al. Evaluation of the frequency of cervical spine injuries in patients with blunt trauma: a comprehensive study from a trauma center. J Guilan Univ Med Sci. 2015;23:10-7.
17. Aydoğmuş E, Çavdar S. Morphometric study of the cervical spinal canal content and the vertebral artery: implications for surgical interventions. Int J Spine Surg. 2020;14(4):455-61. doi: 10.14444/7070.
18. Ezra D, Masharawi Y, Salame K, Slon V, Alperovitch-Najenson D, Hershkovitz I. Demographic aspects in cervical vertebral bodies' size and shape (C3–C7): a skeletal study. Spine J. 2017;17(1):135-42. doi: 10.1016/j.spinee.2016.07.026.
19. Ezra D, Slon V, Kedar E, Masharawi Y, Salame K, Alperovitch-Najenson D, et al. The torg ratio of C3–C7 in African Americans and European Americans: A skeletal study. Clin Anat. 2019;32(1):84-9. doi: 10.1002/ca.23219.
20. Been E, Shefi S, Soudack M. Cervical lordosis: the effect of age and gender. Spine J. 2017;17(6):880-8. doi: 10.1016/j.spinee.2017.01.015.
21. Rozendaal AS, Scott S, Peckmann TR, Meek S. Estimating sex from the seven cervical vertebrae: an analysis of two European skeletal populations. Forensic Sci Int. 2020;306:110072. doi: 10.1016/j.forsciint.2019.110072.
22. Seyyed Ahmadi M, Pejhan A, Keyvanloo F. Radiographic components in forward head posture and its relations with gender and height. J Sabzevar Univ Med Sci. 1970;17(4):266-73.
23. Sepehri S, Sheikhhoseini R, Piri H, Sayyadi P. The effect of various therapeutic exercises on forward head posture, rounded shoulder, and hyperkyphosis among people with upper crossed syndrome: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2024;25(1):105. doi: 10.1186/s12891-024-06544-2
24. Rahmati H. A study of the hegemonic potentials of Iranian teachers’ collective activism (1920-2023). 2024. http://hdl.handle.net/1828/15779.
25. Rajabi R, Ardakani MK, Minoonejad H, Abshenas E, Beni MN. Comparison of the average forward head angle of male and female students in three educational levels. J Rehabil Sci Res. 2020;7(4):184-8. doi: 10.52547/jrsr.2020.207.
26. Ezra D, Hershkovitz I, Salame K, Alperovitch-Najenson D, Slon V. Osteophytes in the cervical vertebral bodies (C3–C7)—demographical perspectives. Anat Rec. 2019;302(2):226-31. doi: 10.1002/ar.24147.
27. Parenteau CS, Wang NC, Zhang P, Caird MS, Wang SC. Quantification of pediatric and adult cervical vertebra—anatomical characteristics by age and gender for automotive application. Traffic Inj Prev. 2014;15(6):572-82. doi: 10.1080/15389588.2014.940760.
28. Norasteh A, Zolghadr H. The effect of age on the alignment and range of motion of the cervical spine: a review study. J Paramed Sci Rehabil. 2022;11(1):109-22. doi: 10.29252/jpsr.11.1.109.
29. Lazić E, Glišić B, Stamenković Z, Nedeljković N. Changes in cervical lordosis and cervico vertebral morphology in different ages with the possibility of estimating skeletal maturity. Srp Arh Celok Lek. 2015;143(11-12):662-8. doi: 10.2298/SARH1512662L.
30. Atri A, Mohali Z, Taghizadeh M, Davoodpoor E. Postural abnormalities in male and female students of Ferdowsi University Mashhad. IJSS. 2013;3(12):1330-4. doi:10.11159/ijss.2013.101.
31. Mehrdad H, Sohrab G. Study of postural abnormalities of male students of Sahand University of Technology. Phys Educ Stud. 2013;17(2):83-7. doi:

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.