[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
About Journal::
Editorial Board::
Articles Archive::
Indexing Databases::
To Authors::
To Reviewers::
Registration::
Submit Your Article::
Policies and Publication Ethics::
Archiving Policy::
Site Facilities::
Contact Us::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Citations794658
h-index1211
i10-index1714
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 11, Issue 4 (9-2024) ::
2024, 11(4): 1-11 Back to browse issues page
Propylene Glycol induces Excessive Neurodegeneration in Combination with Amyloid Beta1-40 Toxin in Male Rat Hippocampus
Sajjad Salari , Maryam Bagheri
Ilam University of Medical Sciences, Faculty of Medicine, Department of Physiology, Ilam, Iran , maryam.bagheri@medilam.ac.ir
Abstract:   (255 Views)
Introduction: Propylene glycol (PG) is frequently used as a solvent for various medications. However, there is substantial evidence of Propylene glycol toxicity, such as depression, agitation, and seizures, particularly when used in combination with other drugs. Here, we aimed to study the effect of Propylene glycol administration in combination with amyloid β₁₄₀ injection on hippocampal neurons.
Material & Methods: Thirty-six male Wistar rats were randomly divided into four groups: sham, amyloid β₁₄₀ injection group, Propylene glycol group, and amyloid β₁₄₀ + Propylene glycol group. Alternation behavior, number of neurons in the hippocampus, lipid peroxidation markers, and superoxide dismutase levels were analyzed in all rats.
Results: When Propylene glycol was co-administered with amyloid β₁₄₀, a notable reduction in the mean neuronal count was observed in the CA1, CA3, and DG regions compared with the amyloid β₁₄₀ only injected animals (P < 0.05). Furthermore, Propylene glycol induced an increase in lipid peroxidation markers (10.78 ± 0.4) and a decrease in antioxidant content (2.8 ± 0.17) when administered with amyloid β₁₄₀, compared to the animals that received only amyloid β₁₄₀ (P < 0.05). A similar pattern was found in alternation behavior compared with the group with amyloid β₁₄₀ injection (P < 0.001).
Conclusion:  Propylene glycol could produce excessive neurotoxicity in regions of the hippocampus when co-administered with amyloid β₁₄₀. It likely increases lipid peroxidation and reduces superoxide dismutase in the rat brain. The use of different agents as a vehicle should be considered, especially in the elderly.
 
Keywords: Propylene Glycol, Superoxide Dismutase, Malondialdehyde, Neurodegenerative Diseases, Amyloid beta-Peptides
Full-Text [PDF 1521 kb]   (83 Downloads)    
Type of Study: Research | Subject: Physiology
Received: 2024/04/25 | Accepted: 2024/06/19 | Published: 2024/09/18
References
1. Lim TY, Poole RL, Pageler NM. Propylene glycol toxicity in children. J Pediatr Pharmacol Ther. 2014;19(4):277-82.
2. Fiume MM, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler D, et al. Safety assessment of propylene glycol, tripropylene glycol, and PPGs as used in cosmetics. int j toxicol. 012;31(5_suppl):245S-60S.
3. Salari S, Bagheri M. In vivo, in vitro and pharmacologic models of Parkinson's disease. Physiol Res. 2019;68(1):17-24. DOI: 10.33549/physiolres.933895.
4. Dugger BN, Dickson DW. Pathology of Neurodegenerative Diseases. Cold Spring Harb Perspect Biol. 2017;9(7). DOI: 10.1101/cshperspect.a028035.
5. Zheng Y, Ji B, Chen S, Zhou R, Ni R. The Impact of Uremic Toxins on Alzheimer's Disease. Curr Alzheimer Res. 2022;19(2):104-18. DOI: 10.2174/1567205019666220120113305.
6. Bagheri M, Rezakhani A, Roghani M, Joghataei MT, Mohseni S. Protocol for Three-dimensional Confocal Morphometric Analysis of Astrocytes. J Vis Exp. 2015(106):e53113. DOI: 10.3791/53113.
7. Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer's disease. Med Princ Pract. 2015;24(1):1-10. DOI: 10.1159/000369101.
8. Uchida Y, Onda K, Hou Z, Troncoso JC, Mori S, Oishi K. Microstructural Neurodegeneration of the Entorhinal-Hippocampus Pathway along the Alzheimer's Disease Continuum. J Alzheimers Dis. 2023;95(3):1107-17. DOI: 10.3233/JAD-230452.
9. Drummond E, Wisniewski T. Alzheimer's disease: experimental models and reality. Acta Neuropathol. 2017;133(2):155-75. DOI: 10.1007/s00401-016-1662-x.
10. Food, Administration D. Code of Federal Regulations Title 21—Food and Drugs. Parts. 1970;10:121.200-121.347.
11. Arulanantham K, Genel M. Central nervous system toxicity associated with ingestion of propylene glycol. J. Pediatr. 1978;93(3):515-6.
12. GLASGOW AM, BOECKX RL, MILLER MK, MACDONALD MG, AUGUST GP, GOODMAN SI. Hyperosmolality in small infants due to propylene glycol. Pediatr. 1983;72(3):353-5.
13. AM G. Hyperosmolality in small infants due to propylene glycol. Pediatr. 1983;72(3):353-5.
14. Martin G, Finberg L. Propylene glycol: a potentially toxic vehicle in liquid dosage form. J. Pediatr. 1970;77(5):877-8.
15. Fowles JR, Banton MI, Pottenger LH. A toxicological review of the propylene glycols. crc cr rev toxicol. 2013;43(4):363-90.
16. Lau K, Swiney BS, Reeves N, Noguchi KK, Farber NB. Propylene glycol produces excessive apoptosis in the developing mouse brain, alone and in combination with phenobarbital. Pediatr Res. 2012;71(1):54-62. DOI: 10.1038/pr.2011.12.
17. Shen C, Zhao X, He C, Zuo Z. Developmental toxicity and neurotoxicity assessment of R-, S-, and RS-propylene glycol enantiomers in zebrafish (Danio rerio) larvae. Environ Sci Pollut Res Int. 2022;29(20):30537-47. DOI: 10.1007/s11356-021-17538-8.
18. Jahn A, Bodreau C, Farthing K, Elbarbry F. Assessing Propylene Glycol Toxicity in Alcohol Withdrawal Patients Receiving Intravenous Benzodiazepines: A One-Compartment Pharmacokinetic Model. eur j drug metab ph. 2018;43:423-30.
19. Khan M, Vartanyan A, Scalzo A, Riley S, Cain J, Maliakkal J. Propylene glycol neurotoxicity due to sodium citrate therapy in an infant with renal tubular acidosis. Clin Nephrol Case Stud. 2020;8:33.
20. Yaucher NE, Fish JT, Smith HW, Wells JA. Propylene glycol-associated renal toxicity from lorazepam infusion. Pharmacotherapy. 2003;23(9):1094-9. DOI: 10.1592/phco.23.10.1094.32762.
21. Paxinos G, Watson C. The rat brain in stereotaxic cordinate. 2nd edit. London Academic Press; 1986.
22. Bagheri M, Joghataei MT, Mohseni S, Roghani M. Genistein ameliorates learning and memory deficits in amyloid beta(1-40) rat model of Alzheimer's disease. Neurobiol Learn Mem. 2011;95(3):270-6. DOI: 10.1016/j.nlm.2010.12.001.
23. Bagheri M, Roghani M, Joghataei MT, Mohseni S. Genistein inhibits aggregation of exogenous amyloid-beta(1)(-)(4)(0) and alleviates astrogliosis in the hippocampus of rats. Brain Res. 2012;1429:145-54. DOI: 10.1016/j.brainres.2011.10.020.
24. Ereifej ES, Meade SM, Smith CS, Chen K, Kleinman N, Capadona JR. Status epilepticus due to intraperitoneal injection of vehicle containing propylene glycol in sprague dawley rats. Vet. Med. Int. 2017;2017.
25. Speth P, Vree T, Neilen N, Newell D, Gore M. Propylene glycol pharmacokinetics and effects after intravenous infusion in humans. ther drug monit. 1987;9(3):255-8.
26. Battistella G, Fornari E, Annoni JM, Chtioui H, Dao K, Fabritius M, et al. Long-term effects of cannabis on brain structure. neuropsychopharmacol. 2014;39(9):2041-8. DOI: 10.1038/npp.2014.67.
27. Gaunt I, Carpanini F, Grasso P, Lansdown A. Long-term toxicity of propylene glycol in rats. food cosmet toxicol. 1972;10(2):151-62.
28. Thackaberry EA, Kopytek S, Sherratt P, Trouba K, McIntyre B. Comprehensive investigation of hydroxypropyl methylcellulose, propylene glycol, polysorbate 80, and hydroxypropyl-beta-cyclodextrin for use in general toxicology studies. toxicol sci. 2010;117(2):485-92.
29. Matsushita K, Toyoda T, Morikawa T, Ogawa K. A 13-week subchronic toxicity study of vanillin propylene glycol acetal in F344 rats. Food Chem Toxicol. 2019;132:110643. DOI: 10.1016/j.fct.2019.110643.
30. Hari P, Chhabra S. A Review of Propylene Glycol-free Melphalan Conditioning for Hematopoietic Cell Transplantation for Multiple Myeloma and Light Chain Amyloidosis. Transplant Cell Ther. 2022;28(5):242-7. DOI: 10.1016/j.jtct.2022.02.014.
31. Alsadat AM, Nikbakht F, Hossein Nia H, Golab F, Khadem Y, Barati M, et al. GSK-3beta as a target for apigenin-induced neuroprotection against Abeta 25-35 in a rat model of Alzheimer's disease. neuropeptides. 2021;90:102200. DOI: 10.1016/j.npep.2021.102200.
32. Simunkova M, Alwasel SH, Alhazza IM, Jomova K, Kollar V, Rusko M, et al. Management of oxidative stress and other pathologies in Alzheimer's disease. Arch Toxicol. 2019;93(9):2491-513. DOI: 10.1007/s00204-019-02538-y.
33. Caille I, Allinquant B, Dupont E, Bouillot C, Langer A, Muller U, et al. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development. 2004;131(9):2173-81. DOI: 10.1242/dev.01103.
34. Lanoiselee HM, Nicolas G, Wallon D, Rovelet-Lecrux A, Lacour M, Rousseau S, et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med. 2017;14(3):e1002270. DOI: 10.1371/journal.pmed.1002270.
35. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157-72. DOI: 10.1038/s41582-020-00435-y.
36. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules. 2019;24(8). DOI: 10.3390/molecules24081583.
37. Zhou Y, Zhao X, Hu W, Ruan F, He C, Huang J, et al. Acute and subacute oral toxicity of propylene glycol enantiomers in mice and the underlying nephrotoxic mechanism. Environ Pollut. 2021;290:118050. DOI: 10.1016/j.envpol.2021.118050.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salari S, Bagheri M. Propylene Glycol induces Excessive Neurodegeneration in Combination with Amyloid Beta1-40 Toxin in Male Rat Hippocampus. Journal of Basic Research in Medical Sciences 2024; 11 (4) :1-11
URL: http://jbrms.medilam.ac.ir/article-1-850-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 4 (9-2024) Back to browse issues page
مجله ی تحقیقات پایه در علوم پزشکی Journal of Basic Research in Medical Sciences
Persian site map - English site map - Created in 0.15 seconds with 41 queries by YEKTAWEB 4667