1. Chen J, Liu Q, Liu GH, Zheng WB, Hong SJ, Sugiyama H, et al. Toxocariasis: a silent threat with a progressive public health impact. Infect Dis Poverty. 2018;7(1):59. [
DOI:10.1186/s40249-018-0437-0.]
2. Menegon YA, Pinheiro NB, Santos LM, Rodrigues PRC, Avila LFC, Conceicao FR, et al. Toxocara canis infection may impair bovine herpesvirus type 5 immunization. Res Vet Sci. 2020;132:268–70. [
DOI:10.1016/j.rvsc.2020.06.022.]
3. Moreira GM, Telmo Pde L, Mendonca M, Moreira AN, McBride AJ, Scaini CJ, et al. Human toxocariasis: current advances in diagnostics, treatment, and interventions. Trends Parasitol. 2014;30(9):456–64. [
DOI:10.1016/j.pt.2014.07.003.]
4. Macpherson CN. The epidemiology and public health importance of toxocariasis: a zoonosis of global importance. Int J Parasitol. 2013;43(12-13):999–1008. [
DOI:10.1016/j.ijpara.2013.07.004.]
5. Smith H, Holland C, Taylor M, Magnaval JF, Schantz P, Maizels R. How common is human toxocariasis? Towards standardizing our knowledge. Trends Parasitol. 2009;25(4):182–8. [
DOI:10.1016/j.pt.2009.01.006.]
6. da Silva MB, Urrego AJ, Oviedo Y, Cooper PJ, Pacheco LGC, Pinheiro CS, et al. The somatic proteins of Toxocara canis larvae and excretory-secretory products revealed by proteomics. Vet Parasitol. 2018;259:25–34. [
DOI:10.1016/j.vetpar.2018.06.015.]
7. Ruiz-Manzano RA, Hernandez-Cervantes R, Del Rio-Araiza VH, Palacios-Arreola MI, Nava-Castro KE, Morales-Montor J. Immune response to chronic Toxocara canis infection in a mice model. Parasite Immunol. 2019;41(12):e12672. [
DOI:10.1111/pim.12672.]
8. Salazar Garces LF, Santiago LF, Santos SPO, Jaramillo Hernandez DA, da Silva MB, Alves VDS, et al. Immunogenicity and protection induced by recombinant Toxocara canis proteins in a murine model of toxocariasis. Vaccine. 2020;38(30):4762–72. [
DOI:10.1016/j.vaccine.2020.04.072.]
9. Maizels RM. Toxocara canis: molecular basis of immune recognition and evasion. Vet Parasitol. 2013;193(4):365–74. [
DOI:10.1016/j.vetpar.2012.12.032.]
10. Salama AM, Elgendy DI, Elmahy RA, Eltantawy AF, Seleem MA, Elgohary AM, et al. The potential relationship between Toxocara canis infection and epilepsy in a rat model. Parasitology Research. 2025;124(9):98. [
DOI:10.1007/s00436-025-08528-7.]
11. Jaramillo-Hernandez DA, Salazar Garces LF, Pacheco LGC, Pinheiro CS, Alcantara-Neves NM. Protective response mediated by immunization with recombinant proteins in a murine model of toxocariasis and canine infection by Toxocara canis. Vaccine. 2022;40(6):912–23. [
DOI:10.1016/j.vaccine.2021.12.052.]
12. Ebrahimi M, Seyyedtabaei SJ, Ranjbar MM, Tahvildar-biderouni F, Javadi Mamaghani A. Designing and Modeling of Multi-epitope Proteins for Diagnosis of Toxocara canis Infection. International Journal of Peptide Research and Therapeutics. 2020;26(3):1371–80. [
DOI:10.1007/s10989-019-09940-1.]
13. Shams M, Nourmohammadi H, Asghari A, Basati G, Majidiani H, Naserifar R, et al. Construction of a multi-epitope protein for human Toxocara canis detection: Immunoinformatics approach multi-epitope construct for T. canis serodiagnosis. Informatics in Medicine Unlocked. 2021;26:100732. [
DOI:10.1016/j.imu.2021.100732]
14. Wang N, Sieng S, Chen P, Liang T, Xu J, Han Q. Regulation Effect of Toxocara canis and Anthelmintics on Intestinal Microbiota Diversity and Composition in Dog. Microorganisms. 2024;12(10). [
DOI:10.3390/microorganisms12102037.]
15. Sieng S, Chen P, Wang N, Xu JY, Han Q. Toxocara canis-induced changes in host intestinal microbial communities. Parasit Vectors. 2023;16(1):462. [
DOI:10.1186/s13071-023-06072-w.]
16. Abe K, Shimokawa H, Kubota T, Nawa Y, Takeshita A. Myocarditis associated with visceral larva migrans due to Toxocara canis. Intern Med. 2002;41(9):706–8. [
DOI:10.2169/internalmedicine.41.706.]
17. Abou-El-Naga IF, Mogahed N. Potential roles of Toxocara canis larval excretory secretory molecules in immunomodulation and immune evasion. Acta Trop. 2023;238:106784. [
DOI:10.1016/j.actatropica.2022.106784.]
18. Mubarak AG, Mohammed ES, Elaadli H, Alzaylaee H, Hamad RS, Elkholy WA, et al. Prevalence and risk factors associated with Toxocara canis in dogs and humans in Egypt: A comparative approach. Vet Med Sci. 2023;9(6):2475–84. [
DOI:10.1002/vms3.1228.]
19. Ma GX, Zhou RQ, Song ZH, Zhu HH, Zhou ZY, Zeng YQ. Molecular mechanism of serine/threonine protein phosphatase 1 (PP1calpha-PP1r7) in spermatogenesis of Toxocara canis. Acta Trop. 2015;149:148–54. [
DOI:10.1016/j.actatropica.2015.05.026.]
20. Badri M, Ghaffarifar F, Hassan ZM, Dalimi A, Cortes H. Immunoregulatory Effects of Somatic Extract of Toxocara canis on Airway Inflammations in Murine Model. Iran J Parasitol. 2020;15(4):500–10. [
DOI:10.18502/ijpa.v15i4.4855.]
21. de Moura MQ, da Cunha CNO, de Sousa N, Cruz LAX, Rheingantz MG, Walcher DL, et al. Immunomodulation in the intestinal mucosa of mice supplemented with Lactobacillus rhamnosus (ATCC 7469) and infected with Toxocara canis. Immunobiology. 2023;228(3):152359. [
DOI:10.1016/j.imbio.2023.152359.]
22. Novak J, Machacek T, Majer M, Kostelanska M, Skulinova K, Cerny V, et al. Toxocara canis infection worsens the course of experimental autoimmune encephalomyelitis in mice. Parasitology. 2022;149(13):1720–8. [
DOI:10.1017/S0031182022001238.]
23. Hon LSG, Calvani NED, Ma G, Ward MP, Slapeta J. Low exposure of urban dogs in metropolitan Sydney, Australia to Toxocara canis demonstrated by ELISA using T. canis excretory-secretory (E/S) larval antigens. Vet Parasitol. 2022;302:109663. [
DOI:10.1016/j.vetpar.2022.109663.]
24. Jenkins DJ. Toxocara canis in Australia. Adv Parasitol. 2020;109:873–8. [
DOI:10.1016/bs.apar.2020.01.033.]
25. Rouhani-Rankouhi SZ, Kow KS, Liam CK, Lau YL. Seropositivity and risk factors of Toxocara canis infection in adult asthmatic patients. Trop Biomed. 2020;37(3):599–608. [
DOI:10.47665/tb.37.3.599.]
26. Mizgajska-Wiktor H, Jarosz W, Fogt-Wyrwas R, Drzewiecka A. Distribution and dynamics of soil contamination with Toxocara canis and Toxocara cati eggs in Poland and prevention measures proposed after 20 years of study. Vet Parasitol. 2017;234:1–9. [
DOI:10.1016/j.vetpar.2016.12.011.]
27. Ketzis JK, Lucio-Forster A. Toxocara canis and Toxocara cati in domestic dogs and cats in the United States, Mexico, Central America and the Caribbean: A review. Adv Parasitol. 2020;109:655–714. [
DOI:10.1016/bs.apar.2020.01.027.]
28. Teufel F, Almagro Armenteros JJ, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022;40(7):1023–5. [
DOI:10.1038/s41587-021-01156-3.]
29. Odum MT, Teufel F, Thumuluri V, Almagro Armenteros JJ, Johansen AR, Winther O, et al. DeepLoc 2.1: multi-label membrane protein type prediction using protein language models. Nucleic Acids Res. 2024;52(W1):W215–W20. [
DOI:10.1093/nar/gkae237.]
30. Fattahi R, Shivaee A, Bahraminia M, Omidi N, Kalani BS. Computational design of inhibitory peptides and an mRNA-Based multi-epitope vaccine targeting the MIC3 protein of Eimeriatenella. Exp Parasitol. 2025;275:108986. [
DOI:10.1016/j.exppara.2025.108986.]
31. Saha S, Raghava GP. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins. 2006;65(1):40–8. [
DOI:10.1002/prot.21078.]
32. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics. 2016;32(4):511–7. [
DOI:10.1093/bioinformatics/btv639.]
33. Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, et al. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics. 2010;11:568. [
DOI:10.1186/1471-2105-11-568.]
34. Sharma N, Patiyal S, Dhall A, Pande A, Arora C, Raghava GPS. AlgPred 2.0: an improved method for predicting allergenic proteins and mapping of IgE epitopes. Brief Bioinform. 2021;22(4). [
DOI:10.1093/bib/bbaa294.]
35. Sharma N, Naorem LD, Jain S, Raghava GPS. ToxinPred2: an improved method for predicting toxicity of proteins. Brief Bioinform. 2022;23(5). [
DOI:10.1093/bib/bbac174.]
36. Dhall A, Patiyal S, Raghava GPS. A hybrid method for discovering interferon-gamma inducing peptides in human and mouse. Sci Rep. 2024;14(1):26859. [
DOI:10.1038/s41598-024-77957-8.]
37. Dhanda SK, Gupta S, Vir P, Raghava GP. Prediction of IL4 inducing peptides. Clin Dev Immunol. 2013;2013:263952. [
DOI:10.1155/2013/263952.]
38. Dhall A, Patiyal S, Sharma N, Usmani SS, Raghava GPS. A Web-Based Method for the Identification of IL6-Based Immunotoxicity in Vaccine Candidates. Methods Mol Biol. 2023;2673:317–27. [
DOI:10.1007/978-1-0716-3239-0_22.]
39. Nagpal G, Usmani SS, Dhanda SK, Kaur H, Singh S, Sharma M, et al. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Sci Rep. 2017;7:42851. [
DOI:10.1038/srep42851.]
40. Jain S, Dhall A, Patiyal S, Raghava GPS. IL13Pred: A method for predicting immunoregulatory cytokine IL-13 inducing peptides. Comput Biol Med. 2022;143:105297. [
DOI:10.1016/j.compbiomed.2022.105297.]
41. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714–23. [
DOI:10.1002/elps.1150181505.]
42. Shen Y, Maupetit J, Derreumaux P, Tuffery P. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. J Chem Theory Comput. 2014;10(10):4745–58. [
DOI:10.1021/ct500592m.]
43. Asadinezhad M, Khoshnood S, Asadollahi P, Ghafourian S, Sadeghifard N, Pakzad I, et al. Development of innovative multi-epitope mRNA vaccine against Pseudomonas aeruginosa using in silico approaches. Brief Bioinform. 2023;25(1). [
DOI:10.1093/bib/bbad502.]
44. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol. 1999;112:531–52. [
DOI:10.1385/1-59259-584-7:531.]
45. Castiglione F, Duca K, Jarrah A, Laubenbacher R, Hochberg D, Thorley-Lawson D. Simulating Epstein-Barr virus infection with C-ImmSim. Bioinformatics. 2007;23(11):1371–7. [
DOI:10.1093/bioinformatics/btm044.]
46. Grote A, Hiller K, Scheer M, Munch R, Nortemann B, Hempel DC, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005;33(Web Server issue):W526–31. [
DOI:10.1093/nar/gki376.]
47. Sato K, Akiyama M, Sakakibara Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat Commun. 2021;12(1):941. [
DOI:10.1038/s41467-021-21194-4.]
48. Buchan DWA, Jones DT. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res. 2019;47(W1):W402–W7. [
DOI:10.1093/nar/gkz297.]
49. Wroblewski K, Kmiecik S. Integrating AlphaFold pLDDT Scores into CABS-flex for enhanced protein flexibility simulations. Comput Struct Biotechnol J. 2024;23:4350–6. [
DOI:10.1016/j.csbj.2024.11.047.]
50. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(Web Server issue):W407–10. [
DOI:10.1093/nar/gkm290.]
51. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996;8(4):477–86. [
DOI:10.1007/BF00228148.]
52. Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9:514. [
DOI:10.1186/1471-2105-9-514.]
53. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51(10):2778–86. 10.1021/ci200227u.
54. Lopez-Blanco JR, Aliaga JI, Quintana-Orti ES, Chacon P. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res. 2014;42(Web Server issue):W271–6. [
DOI:10.1093/nar/gku339.]
55. Fattahi R, Sadeghi Kalani B. mRNA vaccine design using the proteome of Theileria annulata through immunoinformatics approaches. mSphere. 2025;10(5):e0080924. [
DOI:10.1128/msphere.00809-24.]